
Assisting
End Users
in Workflow
Systems

Nico Naus

Assisting End Users in
Workflow Systems

Cover image: Jacqueline Hulst - luminosa.nl
Cover design: Joyce Vanhommerig - vanhommerig.be

ISBN: 978-90-393-7297-5

Assisting End Users in Workflow
Systems

Ondersteuning voor gebruikers van Workflowsystemen
(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op
gezag van de rector magnificus, prof.dr. H.R.B.M. Kummeling, ingevolge
het besluit van het college voor promoties in het openbaar te verdedigen op

maandag 29 juni 2020 des middags te 12.45 uur

door

Nico Naus
geboren op 16 augustus 1991

te Gorinchem

Promotor: Prof. dr. J.Th. Jeuring

“You have to take seriously the notion that understanding the universe is your
responsibility, because the only understanding of the universe that will be useful to
you is your own understanding.”

Terence McKenna

i

Samenvatting

Tegenwoordig gebruikt bijna ieder bedrijf en iedere instelling workflow
software voor hun werkprocessen. Ziekenhuizen gebruiken software om
hun zorgprocessen te automatiseren. De kustwacht gebruikt workflowsys-
temen ter ondersteuning van zoek- en reddingsoperaties. Marineschepen
gebruiken werkprocesautomatiseringssoftware om mensen, middelen en
missiedoelen te beheersen.

Voor deze systemen hun intrede deden, kenden gebruikers de processen
door en door, en waren ze zich er van bewust hoe hun keuzes het proces
beïnvloeden. Workflowsoftware verbergt het verloop van de processen
achter interfaces. Voor eindgebruikers is het nu niet altijd duidelijk hoe
keuzes invloed uitoefenen op een taak. De informatie die beschikbaar is,
speelt ook een rol in het beslissingsproces van een eindgebruiker. Hoe
weet de gebruiker dat alle informatie in ogenschouw genomen is, voor een
beslissing genomen wordt? Een manier om gebruikers van meer informatie
te voorzien over hun huidige situatie, is door de gebruiker te voorzien van
hints over de direct te nemen volgende stap. Deze hints zijn gebaseerd
op de huidige situatie van de eindgebruiker: de positie in de werkstroom
en de gegevens in het systeem. In deze dissertatie poog ik de vraag te
beantwoorden, hoe we eindgebruikers kunnen voorzien van hints voor een
volgende stap om ze te ondersteunen bij hun beslissingsproces.

Het antwoord op die vraag word in deze dissertatie gezocht in de
toepassing van techieken ontwikkeld voor intelligente tutor systemen (IT-
Sen) en automatische programma analyse. Eerder onderzoek naar ITS strate-
gieën voor het oplossen van problemen in ITSen was de inspiratie voor de
eerste aanpak om volgende-stap hints te genereren. Door het bestaande sys-
teem uit te bereiden met extra informatie, kan het systeem gezien worden
als een regel gebaseerd probleem, waardoor standaard AI zoekalgoritmes
toegepast kunnen worden. De tweede aanpak is gebaseerd op technieken uit
de automatische programma analyse. Door gebruik te maken van symbol-
ische executie kunnen volgende-stap hints automatisch berekend worden,
zonder dat de originele programmacode aangepast hoeft te worden.

Het toepassen van beide technieken resulteert in twee volgende-stap

hintsystemen. Het ene wordt ondersteund door de programmeur, het an-
dere is volledig automatisch. Als onderdeel van de ontwikkeling van het
automatische systeem wordt ook een formele taak-georiënteerd program-
meren semantiek ontwikkeld, inclusief een symbolische executie semantiek.
Beide systemen worden sound en complete bewezen. Ook zijn beide sys-
temen geïmplementeerd, waarmee hun werking in de praktijk gedemon-
streerd wordt. Het voorzien van gebruikers van volgende-stap hints is
cruciaal in het verbeteren van de kwaliteit van beslissingen. Het helpt ge-
bruikers om inzicht te krijgen in het effect van hun keuzes, en om er zeker
van te zijn dat ze alle informatie in hun overweging mee hebben genomen.

iii

Abstract

In today’s society, almost every company and institution employs some
kind of workflow automation. Hospitals employ software that automates
health care processes. The coastal guard uses workflow software to assist
in search and rescue operations. Naval ships use workflow automation
software to manage people, resources and mission goals.

Before automation, users knew the process by heart, and knew how
their choices influenced the process. Workflow systems hide the flow of pro-
cesses behind interfaces. For end users, it is not always clear how decisions
influence the progress of a task. Another factor in the decision process of
an end user is the information available. How can a user be sure that he or
she took all information into consideration before reaching a decision? One
way to provide users with more information about their current situation is
to provide them with next-step hints. These hints are based on their current
situation: their position in the workflow and the data in the system. In this
dissertation, I attempt to answer the question, how can we provide end
users with next-step hints to aid them in making decisions?

The answer to that question is found by applying of techniques from
intelligent tutoring systems (ITS) and program analysis. Previous work on
ITS strategies inspired the first approach to generate next-step hints. By ex-
tending the original program with additional information, it can be viewed
as a rule-based problem, making it susceptible to generic AI search and
solving algorithms. The second approach comes from program analysis. By
employing symbolic execution, next-step hints are automatically calculated,
without any changes to the original code.

The application of both techniques results in two next-step hints sys-
tems. One system, aided by the programmer, the other fully automatic.
In developing the automatic system, a formal Task-oriented Programming
semantics is also developed, including a symbolic execution semantics. Both
systems are proven to be sound and complete. They are both implemented,
too, showing that they work in practice. Providing next-step hints to end
users is crucial in improving the quality of decisions. It helps end users by
giving insight into the effects of their choices, and makes sure that all data
is taken into consideration.

v

Acknowledgements

I have always found it difficult to make choices in life. When the time came
in high school to pick and choose courses, I chose all of them. After I finished
high school, I was very unsure what to do next. Mathematics was always
my strongest course in high school, so that was an obvious choice, or so I
thought.

The first year of my mathematics bachelor was a tough one. My grades
were not that good, and I felt a bit lost. After trying courses from several
other programs, I became interested in Computer Science. I then completed
my bachelors degree in computer science in three years. As the end of the
program was nearing, I became more worried about the choice I had to
make, what to do next? Most of my friends went off to industry, and I was
wondering if I had to do the same. When my bachelor project was almost
over, I knew I was not ready to end my time at the University just yet, so I
applied for a Master.

I really enjoyed the courses on functional programming, compiler con-
struction and program analysis, but what to choose as a topic for my master
thesis? About the time I had to pick a topic, Peter Thiemann from Freiburg
gave a presentation, suggesting several interesting Master thesis topics.
These sparked my interest, and I went off to Freiburg to work on dynamic
type inference for JavaScript. But, all good things come to an end, and again
a choice had to be made, what to do next?

Over the years, I have noticed that I have several ways of dealing with
choices. If possible, I try to do everything. When that is not an option, I’ll
try to postpone the decision as much as possible. And if that fails, making
lists with pros and cons usually helps.

When the opportunity came up to do a PhD about making choices, the
decision was quickly made! Over the course of my PhD, I investigated how
we can use mathematics and computer science to help users of workflow
systems make choices. I describe two different approaches to solving this
problem in the coming chapters.

During my time at Utrecht University, I have also been able to pursue
another interest of mine, namely politics. The opportunity came up to join a
new University Council party called Utrecht PhD Party (UPP). I was lucky

to receive enough votes, so I could serve two years on the council. For one
day a week, it was my job to collect as much information as possible, gather
colleagues’ opinions and weigh the consequences of new policies proposed
by the board. I was able to improve the quality of the decisions made by the
board and the council, and to improve life as a PhD candidate at the UU.
At the same time, this was a remarkable opportunity to rapidly develop
skills like understanding lengthy policy documents in relatively short time,
negotiating a solution, and overcoming differences in opinions to find a
solution that works for everyone. Looking back on my years as a council
member now, it strikes me as funny that it was actually my job to make
choices, while I feel that I struggle with exactly that.

After six years of studying at the university, four years of PhD research
and two years as a council member, what have I learned in my personal
quest for decision strategies? I think that can be summed up in one sentence.

With time, a solution will present itself.
I am very grateful for all the opportunities I have been given so far,

especially the time to do research to obtain my PhD. And I am very much
looking forward to the next challenge and adventure life will bring me.

First and foremost, I would like to thank my supervisor Johan Jeuring.
He has given me the unique opportunity to develop myself as a researcher.
Both his guidance and the freedom to pursue directions that I myself found
interesting, stimulated me to better myself and my work.

Second, I would like to thank the Dutch Technology Foundation STW,
which partly funded my research, together with NLDA, Chipsoft and the
Netherlands Royal Navy. Thank you all for investing in the topic of Task-
oriented Programming.

I have had more discussions than I can count with my colleagues Tim
Steenvoorden and Markus Klinik from Radboud University. The many
hours spend discussing ideas and solving problems any one of us had run
into, were the main inspiration and driving force behind this dissertation.

I would like to thank Margo de Wolf, who has coached me on my pre-
sentation skills over the course of my PhD. Her many insightful suggestions
allowed me improve my skills in conveying research results to others, in
my opinion a crucial part of doing research.

This work is part of the research programme TOP Support for Collabora-
tions on the Internet, with project number 13855, which is (partly) financed
by the Netherlands Organisation for Scientific Research (NWO).

Work in the thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics)

vii

Contents

Dutch summary i

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Publications . 4
1.2 Online resources . 6

I Rule-based problems & programmer assisted hint genera-
tion 9

2 A multi-user feedback framework 11
2.1 Introduction . 11
2.2 Problem description . 13

2.2.1 Constructs . 13
2.2.2 Hints . 14
2.2.3 Research question . 14

2.3 Problem formalisation . 15
2.3.1 Semantics . 17

2.4 Trace semantics . 17
2.4.1 RuleTree observations 19
2.4.2 Traces of RuleTrees . 20

2.5 Solving algorithms . 21
2.5.1 Breadth First Trace . 21
2.5.2 Heuristic Trace . 22

2.6 Implementation . 23
2.6.1 Properties of the traces function 24
2.6.2 Command & Control system 25

2.7 Conclusions . 27
2.8 Related work . 27

2.8.1 Rule-based problem modelling 27
2.8.2 Workflow Analysis . 28
2.8.3 Decision Support Systems 29
2.8.4 Electronic Performance Support Systems 29

3 Generating next-step hints for tasks, puzzles and exercises 31
3.1 Introduction . 31
3.2 Ideas . 32

3.2.1 Using RuleTree to describe Ideas strategies 32
Disjunctive Normal Form 33
Gaussian Elimination 33

3.3 PuzzleScript . 35
3.3.1 Solving Sokoban . 36

3.4 iTasks . 38
3.4.1 Solving a sliding puzzle 38

3.5 Conclusion . 41
3.5.1 Ideas . 41
3.5.2 PuzzleScript . 42
3.5.3 iTasks . 42

II Task-oriented programming & automatic hint generation 43

4 An example-based introduction to task-oriented programming 45
4.1 Introduction . 45

4.1.1 Task-oriented programming 45
4.1.2 Implementations of TOP 46
4.1.3 Challenges . 47

4.2 TOP by example . 47
4.2.1 Tasks model collaboration 47
4.2.2 Tasks are reusable . 48
4.2.3 Tasks are driven by user input 48
4.2.4 Tasks can be observed 49
4.2.5 Tasks are never done 49
4.2.6 Tasks can share information 50
4.2.7 Tasks are predictable 51

4.3 Conclusion . 51

5 TopHat 53
5.1 Introduction . 53
5.2 Language . 54

5.2.1 Expressions . 54

5.2.2 Editors . 56
5.2.3 Steps . 58
5.2.4 Parallel . 60
5.2.5 Annotations . 61

5.3 Example . 61
5.4 Semantics . 63

5.4.1 Evaluating expressions 64
5.4.2 Task observations . 66
5.4.3 Normalising tasks . 68
5.4.4 Handling user inputs 70
5.4.5 Implementation . 73

5.5 Properties . 73
5.5.1 Type preservation . 74
5.5.2 Progress . 74
5.5.3 Soundness and completeness of Inputs 75

5.6 Related work . 75
5.6.1 TOP implementations 75
5.6.2 Worfklow modelling 76
5.6.3 Process algebras . 77
5.6.4 Reactive programming 78
5.6.5 Session types . 80

6 Symbolic TopHat 81
6.1 Introduction . 81
6.2 Examples . 82

6.2.1 Positive value . 82
6.2.2 Tax subsidy request . 83
6.2.3 Flight booking . 85

6.3 Language . 86
6.3.1 Expressions, values, and types 87
6.3.2 Inputs . 88
6.3.3 Path conditions . 89

6.4 Semantics . 89
6.4.1 Symbolic evaluation 89
6.4.2 Observations . 90
6.4.3 Normalisation . 92
6.4.4 Handling . 94
6.4.5 Simulating . 94
6.4.6 Solving . 98
6.4.7 Implementation . 99
6.4.8 Outlook . 99

6.5 Properties . 100
6.5.1 Soundness . 100
6.5.2 Completeness . 101

6.6 Conclusion . 102
6.6.1 Future work . 103

6.7 Related work . 103
6.7.1 Symbolic execution . 103
6.7.2 Contracts . 104
6.7.3 Axiomatic program verification 104

7 Assistive TopHat 107
7.1 Introduction . 107
7.2 Examples . 108

7.2.1 Tax subsidy request . 108
7.2.2 Dining Computer Scientists problem 109

7.3 Generating next-step hints . 110
7.3.1 Symbolic execution . 111
7.3.2 Symbolic semantics . 112
7.3.3 Next-step hints observation 113
7.3.4 Tax subsidy request . 114
7.3.5 Dining Computer Scientists 115

7.4 Properties . 116
7.4.1 Correctness of simulate 117
7.4.2 Correctness of hints 120

7.5 Related work . 121
7.5.1 Automatic hint generation in intelligent tutoring sys-

tems . 122

III Conclusions 123

8 Conclusion 125
What is the essence of the task-oriented programming

paradigm? 125
How can we define and guarantee properties of tasks? 126
How can we calculate next-step hints from a work-

flow specification? 126

9 Future work 129
9.1 End-user run-time feedback 129

9.1.1 Unified hints framework 129
9.1.2 iTasks integration . 130

9.1.3 Hint presentation . 130
9.1.4 Testing the effect of hints 130
9.1.5 Other kinds of feedback 131

9.2 Task analysis . 131
9.2.1 Analysis of TopHat programs 131
9.2.2 Verification of iTasks behaviour 131
9.2.3 Worfklow mining . 132

9.3 TOP language development 133
9.3.1 Visual TopHat . 133
9.3.2 TopHat 2.0 . 133

Curriculum Vitae 135

Appendices 139

A TopHat type preservation proofs 139
A.1 Type preservation under evaluation 140
A.2 Type preservation under striding 140

A.2.1 Task value preserves types 140
A.2.2 Striding preserves types 142

A.3 Proof of type preservation under normalisation 144
A.4 Proof of type preservation under handling 144

B TopHat progress proof 147

C Proof of correctness of Inputs function 151

D Symbolic TopHat soundness and completeness 155
D.1 Soundness proofs . 156

D.1.1 Proof of soundness of symbolic evaluation semantics 156
D.1.2 Proof of soundness of symbolic striding semantics . . 160
D.1.3 Proof of soundness of symbolic normalisation semantics162
D.1.4 Proof of soundness of symbolic handling semantics . 163
D.1.5 Proof of soundness of symbolic interacting semantics 166

D.2 Completeness proofs . 167
D.2.1 Proof of completeness of the symbolic handling se-

mantics . 167
D.2.2 Proof of completeness of the symbolic interaction se-

mantics . 169

E Assistive TopHat soundness and completeness 171
E.1 Completeness proofs . 172

E.1.1 Completeness of Simulate 172
E.1.2 Completeness of interaction 172
E.1.3 Completeness of handling 173
E.1.4 Completeness of normalisation 175
E.1.5 Completeness of striding 176
E.1.6 Completeness of evaluate 178

E.2 Soundness proofs . 182
E.2.1 Soundness of simulate 182
E.2.2 Soundness of interaction 182
E.2.3 Soundness of handle 183
E.2.4 Soundness of normalise 185
E.2.5 Soundness of stride . 186
E.2.6 Soundness of evaluate 188
E.2.7 V preserves consistency 191

References 195

xiii

For Ype

1

Chapter 1

Introduction

Today’s work environment looks radically different from what it was 20
years ago. In every field, technology is being used to guide business pro-
cesses. It does not matter if the business is small or large, government or
commercial, agriculture or services. Business process automation is om-
nipresent.

The workflow software industry is booming. Many frameworks exist,
and it is a multi billion dollar industry.

Automation of business processes in workflow software has enormous
benefits. It allows companies to analyse their processes and optimise them.
Automation improves quality, and can contain cost.

But, automation also comes at a cost. Users need to be properly trained
in order to use the automatic systems. Processes that were once known
by heart, are now hidden behind user interfaces and buried in workflow
systems. Choices that users make can impact the goal that they want to
achieve in ways that they cannot oversee. They might feel that they are
unable to oversee all information in the system.

In an attempt to overcome these problems, a business may employ a
performance support system (PSS). The goal of a PSS is to facilitate so called
just in time training on the job. When a worker requires information or
training to perform a task, some tools are provided to obtain the required
knowledge or skill, just in time (Schaik, Pearson, & Barker, 2002). A PSS
enables workers to learn as they do, and improves their individual perfor-
mance. Drawbacks of a PSS are that they do not help with the decisions a
user has to take, only guidelines and general information is provided. A
PSS does not take the current state of the system into account.

An alternative solution could be to use a decision support system (DSS).
Such a system employs some kind of model of the problem that needs
a decision. Then based on specific information, some kind of analysis is
performed, to suggest a choice to the user (Shim et al., 2002).

2 Chapter 1. Introduction

Supporting users in their decision-making process has several benefits
(Power, 2002). The individual productivity is improved. Users spend less
time on the manipulation of data and on the clerical aspects of their job.
The quality and speed of decisions increases. A DDS encourages fact-based
decision making and saves time in retrieving decision relevant information.
Workers improve their decision-making skills. Users develop a better under-
standing of the business and the environment in which they make decisions.
On top of that, they require less expertise from users to perform their tasks.

Using a DSS has several potential drawbacks. Since it relies on a model
of the problem, a DSS is very rigid. It requires developers to make a model
of the problem, and if the workflow system that it supports is extended, the
model needs to be updated as well. Furthermore, developing a DSS requires
a significant financial investment (Power, 2002).

In this thesis I develop technologies that can be used to calculate next-
step hints for end users, without the drawbacks of traditional DSSs. Based
on the flow of the program, and the information in the system, we want
to calculate next-step hints. By employing techniques from programming
technology, formal methods and intelligent tutoring systems in a novel way,
end users can be assisted in their work. The solutions presented require
minimal to no effort from the programmer, mitigating the major drawbacks
listed above. Validating the effectiveness of these technologies by means of
user studies is left as future work.

How can we calculate next-step hints from a workflow specification?

We investigate this question using the Task-oriented Programming
paradigm (TOP) as a basis.

TOP is a programming paradigm that aims to provide a high level
of abstraction to programmers of workflow programs, while still being
expressive enough to model real-world collaboration. The paradigm has
been around for more than a decade, but only exists in implementation.
The most used TOP implementation is iTasks (Plasmeijer, Lijnse, Michels,
Achten, & Koopman, 2012). It has been subject of study for many years
(P. Koopman, Lubbers, & Plasmeijer, 2018; P. W. M. Koopman, Plasmeijer,
& Achten, 2008; Oortgiese, van Groningen, Achten, & Plasmeijer, 2017;
Plasmeijer et al., 2011; Stutterheim, Achten, & Plasmeijer, 2017), and has
been used to implement several systems for the Netherlands Royal Navy
and the Dutch coast guard (Lijnse, Jansen, & Plasmeijer, 2012; Stutterheim,
Achten, & Plasmeijer, 2016).

Part I describes how ideas from domain-specific languages and artificial
intelligence can be applied to workflow systems to generate next-step hints.

Chapter 1. Introduction 3

In Chapter 2, a domain-specific language that allows the uniform descrip-
tion of rule-based problems is presented, together with a solving framework
that generates next-step hints. This framework uses search algorithms from
artificial intelligence to calculate traces to goal states. From these traces,
next-step hints are generated. Both a formal system and an implementation
in Haskell are developed. The formal solving framework is proven to be
sound and complete. The framework is applied to an example program that
is modelled after an iTasks implementation developed for the Netherlands
Royal Navy (Stutterheim et al., 2016). Then in Chapter 3, we take a look at
several example applications of this framework.

Part II describes a completely different approach to next-step hints,
based on techniques from programming languages, semantics and formal
methods. The fact that TOP only exists in implementation makes (formal)
reasoning about TOP software harder.

To better equip ourselves to answer the question of how we can calculate
next-step hints for TOP programs, we first take a step back and look at the
paradigm itself.

What is the essence of the task-oriented programming paradigm?

Chapters 4 and 5 answer this question by exploring the TOP concepts
first by example, and then by presenting a formal semantics for it, called
TopHat (T̂OP). The language is embedded in the simply typed λ-calculus,
and consists of a layered operational semantics. Evaluation of T̂OP programs
is driven by user input. By embedding the task language, it is clearly sepa-
rated from the semantics of the underlying host language. Along with the
semantics, the following observations over tasks are presented: the current
value, whether a term is stuck, and the accepted inputs. Progress and type
preservation properties are proven for T̂OP, and the whole semantics has
been implemented in Haskell. An extensive comparison of T̂OP with work
in related areas is provided.

This formal semantics forms the ideal starting point for formal reasoning.
Before coming back to the question of how we can calculate next-step hints,
we first take a look at TOP programs themselves.

How can we define and guarantee properties of tasks?

Chapter 6 develops a symbolic execution semantics for T̂OP, called Sym-
bolic T̂OP. The symbolic execution semantics is developed by modifying the
original T̂OP semantics in such a way that it can simulate the execution of
a workflow without having actual user input. This allows us to gather all
possible symbolic outcomes of a program, and then prove that it adheres to

4 Chapter 1. Introduction

a predefined specification. The symbolic execution semantics is shown to
be sound and complete, and an implementation in Haskell is presented.

Coming back to the question of calculating next-step hints for workflow
systems, we now find ourselves with all the ingredients to construct an
automatic feedback framework. Chapter 7 presents this framework, called
Assistive T̂OP. By taking a user defined goal, we can filter out all symbolic
executions that we are interested in. Then these runs can be used to calculate
next-step hints. We prove task simulation to be correct, and show that the
next-step hints generated by Assistive T̂OP are sound and complete.

Part III concludes the dissertation. The findings from Parts I and II are
summed up in Chapter 8. Ideas for future work are presented in Chapter 9.
The proofs mentioned in Parts I and II are then given in Appendices A to E.

1.1 Publications

The following publications were written over the course of my PhD.

2016

Building a Generic Feedback System for Rule-Based Problems

Nico Naus and Johan Jeuring. Trends in Functional Programming.
Together with Johan Jeuring, we explore how to build a generic feedback

system that can be applied to several rule-based systems. We are interested
in providing end users with feedback that guides them to their goal, without
programmers needing to change much in their implementation. To do this,
we propose to use a tree structure that lies on top of the original problem.
This problem could be a game, a workflow or an intelligent tutoring system,
to name a few examples.

All research is performed on my own, with regular discussions with my
supervisor Johan Jeuring. The results of this paper are used in Chapters 2
and 3.

2019

TopHat: A formal foundation for task-oriented programming

Tim Steenvoorden, Nico Naus and Markus Klinik. Principles and Practice of
Declarative Programming.

My colleagues Tim Steenvoorden, Markus Klinik and I have all been
working on the subject of Task-oriented Programming (TOP). The tech-
niques and ideas we wanted to apply to this subject often called for a formal

1.1. Publications 5

semantics. This had never been done, so we put it upon ourselves to develop
a formal TOP semantics.

My contribution to this research started by discussing many different
alternative designs with Tim Steenvoorden and Markus Klinik. I have been
involved in the development of the formal semantics. Furthermore, I have
written the related work section on workflow modelling. My biggest con-
tribution was showing type preservation, progress, soundness and com-
pleteness for this system. The results of this work are used in Chapters 4
and 5.

A symbolic execution semantics for TopHat

Nico Naus, Tim Steenvoorden and Markus Klinik. Implementation and Application
of Functional Languages.

To demonstrate that that having a formal TOP semantics indeed allows
for the application of interesting techniques, we set out to prove properties
over T̂OP programs. Our initial idea was to use Hoare logic, but to no avail.
I came up with the alternative approach of using symbolic execution. This
required alterations to the semantics. We had many discussions about what
this new semantics should look like. When we had decided what a suitable
solution would be, Tim Steenvoorden and I developed the formal semantics.
The simulation function was developed by me, and Tim Steenvoorden was
responsible for the implementation. Tim Steenvoorden wrote the examples
and Markus Klinik the related work. I have proven the symbolic system to
be sound and complete. The results of this work are used in Chapter 6.

2020

Generating next-step hints for task-oriented programs using symbolic
execution

Nico Naus and Tim Steenvoorden. Trends In Functional Programming.
Coming back to the overall topic of providing end users with next-step

hints, the idea was born to apply the symbolic execution which we had
already developed. We allow users to set a goal condition, and filter out
symbolic executions that interest them.

Developing the implementation was a joint effort. The correctness proof,
and most of the writing has been done by me. Tim Steenvoorden greatly
improved the narrative and made several improvements to the paper text.
The introduction and abstract was a joint effort. The results of this work are
used in Chapter 7.

6 Chapter 1. Introduction

Forthcoming

TopHat 2.0: An even more stylish programming language

Tim Steenvoorden and Nico Naus. To be submitted.
Working with T̂OP on the above mentioned topics and several other

topics of interest to Markus Klinik and Tim Steenvoorden provided us
with many ideas on how the language could be improved. Research on the
improvements is led by Tim Steenvoorden, also in discussion with Markus
Klinik and myself. This publication is forthcoming, and its results are not
mentioned in this dissertation. In Section 9.3.2, the improvements we have
in mind are listed.

Multi User Generic Feedback in iTasks

Nico Naus. To be submitted.
Based on previous research on rule-based problem solving, a new ver-

sion of the framework has been developed that supports multiple users,
and is geared more towards iTasks. Results from this work are used in
Chapter 2.

1.2 Online resources

The following online resources belonging to this dissertations and the pub-
lications that are part of it, are available.

rule-tree-semantics The Haskell implementation described in Chapter 2
can be found in the rule-tree-semantics GitHub repository.
https://github.com/niconaus/rule-tree-semantics

iTasks-feedback An alternative implementation in Clean is also available.
This implementation is described in Chapter 3, and can be found in the
iTasks-feedback GitHub repository.
https://github.com/niconaus/iTasks-feedback

tophat-haskell The T̂OP implementation in Haskell implementation de-
scribed in Chapter 5 can be found in the tophat-haskell GitHub repository.
https://github.com/timjs/tophat-haskell

https://github.com/niconaus/rule-tree-semantics
https://github.com/niconaus/iTasks-feedback
https://github.com/timjs/tophat-haskell

1.2. Online resources 7

tophat-clean The T̂OP implementation on top of iTasks that is described
in Chapter 5 can be found in the tophat-clean GitHub repository.
https://github.com/timjs/tophat-clean

symbolic-tophat-haskell The Symbolic T̂OP and Assistive T̂OP implemen-
tation described in Chapters 6 and 7 can be found in the symbolic-tophat-
haskell GitHub repository.
https://github.com/timjs/symbolic-tophat-haskell

https://github.com/timjs/tophat-clean
https://github.com/timjs/symbolic-tophat-haskell

9

Part I

Rule-based problems &
programmer assisted hint

generation

11

Chapter 2

A multi-user feedback
framework

Workflow systems are more and more common due to the automation of business
processes. The automation of business processes enables organisations to simplify
their processes, improve services and to contain costs. A problem with using work-
flow systems is that processes once known by heart, are now hidden from the user.
This, combined with time pressure, lack of experience and an abundance of options,
makes it harder for a user to make the right choices. To aid users of these systems,
we have developed a multi-user rule-based problem-solving framework that can
be instantiated for many workflow systems. It provides hints to the end user on
how to achieve her goals and makes life for the programmer easier, as she only
needs to instantiate the framework instead of programming an ad-hoc solution.
Our approach consists of two parts. First, we present a domain-specific language
(DSL) that offers commonly used constructs for combining components of different
rule-based problems. Second, we use generic search algorithms to solve various
kinds of problems. We show a practical implementation with an example workflow
system. We show that this system fulfils several desirable properties.

2.1 Introduction

Due to the automation of business processes, more and more workflow sys-
tems are being used to manage and perform tasks. The Dutch coastal guard
uses a workflow system to monitor the seas and to aid in emergencies (Li-
jnse et al., 2012). Hospitals use systems like EPIC or WebPT to manage
patients, assign tasks and monitor treatment. Teachers use intelligent tu-
toring systems to allow students to receive immediate and personalised
feedback on their exercises.

A downside of using workflow systems is that a process that was once
known by heart, is now hidden from the user. This, combined with the fact

12 Chapter 2. A multi-user feedback framework

that there might be time pressure, lack of experience or an abundance of
options, makes it harder for end users to make the right choices between
the different options, to achieve the goal a user has in mind.

To overcome this problem, we want to assist a user in reaching her goals
more efficiently.

This is commonly done by employing a decision support system (DSS)
(Shim et al., 2002). Many different types of DSS exist, but they have several
components in common. A DSS has some model that represents the domain
in which a decision needs to me made. Using data about the current situ-
ation, together with the model, some kind of analysis is performed. The
specific analysis used differs per DSS. Based on the results of the analysis,
the DSS suggests a decision to the user.

Using a DSS has many advantages (Power, 2002). The productivity of
individual users is improved. Users spend less time on the administrative
aspects of the tasks they need to perform, and spend less time manipulating
data. The quality and speed of the decisions is increased. Time spend on
retrieving decision relative information is reduced, and fact-based decision
making is stimulated.

Traditional DSS have several downsides. First of all, since a DSS relies
on a model of the problem, these systems are very rigid. If the problem is
not modelled, the DSS cannot be used. When the problem or the domain
are altered or expanded, a programmer needs to go back and change the
model accordingly. A second downside is the large financial investment
that is required (Power, 2002).

To overcome the downsides of a DSS, while still being able to enjoy its
benefits, we present a multi-user rule-based problem solver. Our system
consists of two parts; a domain-specific language (DSL) that allows pro-
grammers to express multi-user rule-based problems, and several generic
solving algorithms that calculate traces to the goal, from which hints can be
produced.

The advantage of our system is that it is much easier to implement a
model that describes the multi-user rule-based problem. On top of that,
once the model has been described, there is no need to develop a custom
analysis. Once the model has been expressed in our DLS, one of the generic
solving algorithms can be used to find a solution.

This chapter presents both a formal multi-user rule-based problem-
solving framework, as well as a practical implementation. The trace seman-
tics of the framework is shown to be sound and complete with respect to
the regular semantics of our DSL, using a property verification tool.

Chapter 3 presents several other applications of the rule-based problem-
solving framework, to show that it is indeed applicable to a wide variety of

2.2. Problem description 13

problems.

2.2 Problem description

Our goal is to describe a generic framework for autonomously generating
hints that end-users of workflow systems can use to achieve their goal(s).
By a workflow system we mean a system that automates workflows, allows
multiple users to collaborate, and works on some kind of shared data.

Van der Aalst et al. (Aalst, ter Hofstede, Kiepuszewski, & Barros, 2003)
have identified common patterns of workflow systems. We will use this set
to specify constructs used in workflow systems.

2.2.1 Constructs

The following constructs are common in most workflow systems.

Sequence Perform activities one after the other.
Parallel Split Perform multiple activities at the same time.
Exclusive Choice Choose exactly one activity from a list.
Milestone Make an activity available when the state is in a

certain condition.
Interleaving Perform activities in an arbitrary order.
Multi-Choice Choose one or more activities from a list.
Arbitrary Cycles Repeat part of a workflow an arbitrary number

of times.

In traditional workflow systems, steps can pass data along to the next
step, as well as work on shared data. We simplify our model of workflow
systems to only consider shared data. Therefore we do not need constructs
like synchronisation points and discriminators, as described by van der
Aalst et al. Steps can immediately observe the result of every other step
through the shared data, instead of having to wait on incoming branches.

Additionally, we want to support multiple users. The most straight-
forward way to accommodate this is by means of an Assign construct, which
assigns an activity to a user or possibly a set of users. Such a construct is
heavily used in for example the iTasks workflow framework (Plasmeijer et
al., 2012).

14 Chapter 2. A multi-user feedback framework

2.2.2 Hints

The purpose of our framework is to give hints to end-users of workflow
systems; information that they can use to achieve their goal. What is the
best treatment to select for a certain patient? What action needs to be taken
when a fire breaks out on a ship?

We use traces consisting of sequences of steps that lead users to states in
which the goal has been reached. From these traces, richer feedback infor-
mation can be constructed. For example, next-step hints can be constructed
by returning the first element in the trace.

The traces that we want to generate are composed of sets of steps per
time unit, where multiple users can perform a step in each time unit. Fig. 2.1
lists an example of such a trace, where statei is the state at time i.

Application of all steps in one time unit leads to the next state in the
trace.

state0


user1 : step1
user2 : step2


−−−−−−−−−−−−−−→ state1


user1 : step3

user3 : step4


−−−−−−−−−−−−−−→ state2

FIGURE 2.1: An example of what a trace might look like

For this to work properly, we require that all steps performed in one time
unit are independent of each other. This means that the order of applying
steps to the original state does not affect the resulting state. On top of that,
we require that every user performs at most one step per time unit.

2.2.3 Research question

In the following sections, we will answer the question: how do we, for any
given multi-user workflow problem, calculate traces that lead to a solution
state?

We aim to answer this question by first tackling the issue of dealing
with different multi-user workflow systems. By defining a domain-specific
language that allows for the uniform description of problems, we can treat
each of them in a similar manner. Then, to calculate the partial traces, we
employ search algorithms from artificial intelligence.

2.3. Problem formalisation 15

2.3 Problem formalisation

A multi user workflow problem can be considered a well-defined artificial
intelligence (AI) problem (Russell & Norvig, 2010), which consists of the
following components.

Initial state The state of the problem that you want to
solve.

Operator set The set of steps that can be taken, together
with their effects.

Goal test A predicate that is True if the problem is
solved.

Path Cost function A function that describes the cost of each op-
eration.

This is similar to workflows: the state of the workflow system is the
initial state, the steps users can take are the operator set, the goal the user
has in mind is the goal test and finally the resources a workflow uses can be
captured in a path cost function.

By choosing a uniform way to describe workflow problems as well-
defined AI problems, we can treat each problem within the same framework.

Currently, several languages exist to allow programmers to describe
workflow and rule-based problems, but none of them are completely suit-
able for our purposes. Workflow languages allow programmers to model
complex behaviour that makes calculating a path to the goal of a user very
complex or even unfeasible. They are therefore not suitable for our purposes.
Existing rule-based problem modelling languages like PDDL (McDermott
et al., 1998), STRIPS (Fikes & Nilsson, 1971), SITPLAN (Galagan, 1979) and
PLANNER (Hewitt, 1969) have limitations that prevent us from fully de-
scribing the problems from the workflow domain. These languages do not
support higher order definitions, and most of them only support a finite
state-space. Therefore, we design our own rule-based problem modelling
language.

We opt for a domain-specific language (DSL) that is embedded in a
language that supports higher order programming. This means that our
DSL is expressed in a standard programming language, called the host
language. Embedding a DSL into a host language has the specific advantage
that we can use all features from the host language in specifying programs
in our DSL. In this case, we are particularly interested in using abstraction
and application from the host language.

Figure 2.2 lists the components of our DSL.

16 Chapter 2. A multi-user feedback framework

RuleTree a
= Seq [RuleTree a]
| Choice [RuleTree a]
| Par [RuleTree a]
| Assign u (RuleTree a)
| Leaf (CR a)
| Empty

CR a = Cond (Pred a) (CR a)
| Rule n (Effect a)
| u @ (Rule n (Effect a))

Pred a = a→ Bool
Effect a = a→ a
Goal a = a→ Bool
n ∈ set of names
u ∈ set of user identifiers

FIGURE 2.2: Syntax of our rule-based problem DSL

With the DSL, we want to cover all workflow constructs mentioned
in Section 2.2.1, as well as the elements of a well-defined AI problem as
listed above.

We use a slightly simplified definition of an AI problem however. If there
is a cost associated with a certain operation, we encode this as an effect
on the state. This is the common way to encode these effects in workflow
systems. Therefore, we do not need a path cost function.

The (initial) state is modelled by a value of type a.
The operator set is represented by a tree structure we call a RuleTree.

This tree structure describes how operations, which we call rules, relate to
each other. There are four ways to combine RuleTrees; in sequence (Seq),
by choosing among them (Choice), in parallel (Par), or by assigning them
to a user (Assign). These correspond to the workflow constructs sequence,
exclusive choice, parallel split, and user assignment. The Milestone con-
struct is modelled by means of a condition. Interleaving and multi-choice
can be built from these constructs. For arbitrary cycles we rely on the host
language to provide abstraction and application.

The design of the RuleTree is loosely based on strategy language from
the Ideas framework (Heeren, Jeuring, & Gerdes, 2010), iTask combina-
tors (Plasmeijer et al., 2012), and the strategy language presented by Visser
and others (Visser, Benaissa, & Tolmach, 1998).

Finally, the goal test is represented by the predicate Goal a. These three
components make up our DSL for describing rule-based problems.

The leaves of the RuleTree are CR a and Empty. Here, CR a is either
a Cond or an actual rule, where the rule can be assigned to a user u
(u@(Rule n (Effect a))) or unassigned (Rule n (Effect a)), with n the name
of the rule and Effect a the effect of the rule on the state. Conds can be nested.
Rules can be seen as steps, tasks or the smallest units in which work can be
divided.

Conditions are part of the leaves, and guard a CR a, which may contain
another condition. A single leaf is considered to be an atomic action. This

2.4. Trace semantics 17

prevents conflicts between rules and conditions when leaves are executed
in parallel.

We implement the DSL as an embedded DSL in Haskell. This allows
us to use standard Haskell functions to construct for example a RuleTree.
We chose not to implement recursion in our DSL, but instead make use of
recursion in the host language. The advantage of this is that we can keep our
DSL simple and small. Implementing recursion in the DSL requires adding
abstraction and application, making the DSL significantly more complex.
Most rule-based problem can be encoded in this DSL, and as long as there
is an appropriate solving algorithm available, our framework can generate
hints for it.

2.3.1 Semantics

Figure 2.3 defines what it means to apply an entire RuleTree to a state. The
result of the application is a set of end states that can be reached.

Application of a RuleTree is rather straightforward, except for the Seq
and Par cases. If an error occurs inside a Seq, denoted by , the whole
sequence needs to be aborted since the next step does not become available.
This can occur when a condition does not hold, or when a choice has to be
made out of zero elements.

We are only interested in the final states that can be reached, not in
the intermediate states. As a consequence, we can view the semantics of
Par as interleaving of the individual steps contained in the sub-trees. The
function step takes a RuleTree and calculates a set of tuples containing all
steps that can be applied at this point and the remaining RuleTree. This
result is then used by the RuleTree application to interleave all possible
steps, and calculate the final state.

2.4 Trace semantics

We are not so much interested in the final state that is reached, but rather in
the steps that users can take to transition between states. To calculate these
steps, we use a trace semantics. The trace semantics consists of two parts,
namely the firsts and empty observations over RuleTrees, and the function
traces that makes use of these observations.

We introduce two new constructs that will be used to define the two
parts.

18 Chapter 2. A multi-user feedback framework

· : RuleTree a× a→ P(a)
(Seq (rt:rts)) · s | rt · s = 7→

| rt · s , 7→ {x | s′ ∈ rt · s, x ∈ (Seq rts) · s′}
(Seq []) · s = {s}
(Choice (rt:rts)) · s = rt · s ∪ (Choice rts) · s
(Choice []) · s =
(Par (rt:rts)) · s = {(Par (rt′:rts)) · (r · s) | (r, rt′) ∈ step rt}

∪ {(Par (rt:rts′)) · (r · s) | (r, rts′) ∈ step (Par rts)}
(Par []) · s = {s}
(Assign u rt) · s = rt · s
(Leaf (Cond p r)) · s | ¬ps 7→

| ps 7→ (Leaf r) · s
(Leaf (Rule n e)) · s = {e s}
Empty · s = {s}

(A) RuleTree application definition

step : RuleTree a→ P(RuleTree a× RuleTree a)
step (Seq (rt:rts)) = (

⋃{step (Seq rts) | (Empty, Empty) ∈ step rt})
∪ {(r, Seq (rt′:rts)) | (r, rt′) ∈ step rt}

step (Seq []) = {(Empty, Empty)}
step (Choice (rt:rts)) = step rt ∪ step (Choice rts)
step (Choice []) = ∅
step (Par (rt:rts)) = (

⋃{step (Par rts) | (Empty, Empty) ∈ step rt})
∪ {(r, Par (rt′:rts)) | (r, rt′) ∈ step rt}
∪ {(r′, Par (rt:rts′)) | (r′, Par rts′) ∈ step (Par rts)}

step (Par []) = {(Empty, Empty)}
step (Assign u rt) = step rt
step Leaf c = {(c, Empty)}
step Empty = {(Empty, Empty)}

(B) Helper function step

FIGURE 2.3: Semantics of RuleTree application

2.4. Trace semantics 19

RuleSet a = P(CR a))
Trace a = Step a (RuleSet a) (Trace a)

| State a

FIGURE 2.4: Definition of RuleSet and Trace.

2.4.1 RuleTree observations

The basis of the trace semantics of our multi-user rule-based problem con-
sists of the functions F and E , listed in Figure 2.5 and Figure 2.6.

F : RuleTree a× a→ P(RuleSet a× RuleTree a)
F (Seq (rt:rts), s) =
{(R̄, Seq (rt′:rts)) | (R̄, rt′) ∈ F (rt, s)}
∪{x | E(rt), x ∈ F (Seq rts, s)} F (rt, s) .
 F (rt, s) ≡

F (Seq [], s) = ∅
F (Choice (rt:rts), s) = F (rt, s) ∪ F (Choice rts, s)
F (Choice [], s) =
F (Par [rt1, · · · , rtn], s) = {(R̄, Par [rt′1, · · · , rt′n])

| (R̄i, rt′i) ∈ (F (rti, s) ∪ {(∅, rti)})
, R̄ = R̄1 ∪ · · · ∪ R̄n
, R̄ , ∅
, ∀ux@ri, uy@rj ∈ R̄ : ri(rj · s) = rj(ri · s)
, ∀ux@rp, uy@rq ∈ R̄ : rp , rq ⇒ ux , uy}

F (Par [], s) = ∅
F (Assign u rt, s) = F (applyAssign(rt, u), s)
F (Leaf c, s) = {({c}, Empty)}
F (Empty, s) = ∅

FIGURE 2.5: Semantics of the firsts observation F

The function F (firsts) produces a set of elements of the form (R̄, rt),
where R̄ is a set of CR a-elements. R̄ contains all rules that are executed at
the same time. It contains at most one rule per user and all rules in this set
are independent.

Function E (empty) checks if a RuleTree is empty. A RuleTree is consid-
ered empty if at least one of the applications of the tree does not execute
any rules. For example, the empty list sequence (Seq []) is empty, since it
holds no rules. A tree can be empty even when F returns a ruleset. This
is the case for the RuleTree Choice [Seq [], Rule n e], for example, since
when one chooses the first element, no rule is applied. But F returns a set
containing Rule n e.

20 Chapter 2. A multi-user feedback framework

E : RuleTree a→ Bool
E (Seq (rt:rts)) = E (rt) ∧ E (Seq rts)
E (Seq []) = True
E (Choice (rt:rts)) = E (rt) ∨ E (Choice rts)
E (Choice []) = False
E (Par (rt:rts)) = E (rt) ∧ E (Par rts)
E (Par []) = True
E (Assign u rt) = E (rt)
E (Empty) = True
E (Leaf c) = False

FIGURE 2.6: Semantics of the empty observation E

Building the set of first rulesets is not trivial in a multi-user setting.
This especially shows in the case of Par. This is due to the fact that parallel
RuleTrees allow multiple users to execute rules at the same time.

To calculate F (Par rts, s), we calculate F for every RuleTree that is
executed in parallel. Since we do not have to execute a rule from every
parallel RuleTree at each step, we add the empty ruleset with the original
RuleTree ((∅, rti)) to the set of F . For each RuleTree rti in rts, we now pick
one element of this F set that also contains the empty ruleset. Then, we put
all the selected rules for each rti together to build the total ruleset R̄. The
remaining RuleTree is built by concatenating all rt′i elements. These could
just be the original RuleTree rti, if the selected element was the empty set.

Three conditions must hold for any R̄. First, we require R̄ to be non-
empty. Second, we require every pair of elements in R̄ to be independent,
meaning that the order of application to s does not influence the resulting
state. And third, we verify that there is at most one rule assigned to every
user.

Function F relies on several auxiliary functions listed in Figure 2.7.

2.4.2 Traces of RuleTrees

Now that we have defined the firsts and empty observation, the traces
function can be constructed. Fig. 2.8 lists the definition of this function.

The function traces takes a RuleTree and state, and returns the set of all
possible traces. F is called on the RuleTree. This returns a ruleset, paired
with the remaining RuleTree. These rulesets represent every possible action
that can be taken. For each ruleset, a new state is calculated by applying the
set to the current state. Then traces is calculated recursively to calculate the
rest of the trace. When a RuleTree is empty (E(rt)), the trace is completed,
and the current state is returned.

2.5. Solving algorithms 21

· : RuleSet a× a→ a
R̄ · s =

R̄ \ {Leaf (u @ (Rule n e))} · (e s) Leaf (u @ (Rule n e)) ∈ R̄
R̄ \ {Leaf (Rule n e)} · (e s) Leaf (Rule n e) ∈ R̄
R̄ \ {Leaf (Cond p c)} · (c · s)) Leaf (Cond p c) ∈ R̄, p s
 Leaf (Cond p c) ∈ R̄,¬(p s)

(A) Semantics of ruleset application

 ∪ = A ∪ = A ∪ A = A A ∪ B = {x | x ∈ A ∨ x ∈ B}

(B) Semantics of union

applyAssign : RuleTree a×User→ RuleTree a
applyAssign(Seq [rt1, · · · , rtn], u) = Seq [Assign u rt1, · · · , Assign u rtn]
applyAssign(Choice [rt1, · · · , rtn], u) = Choice [Assign u rt1, · · · , Assign u rtn]
applyAssign(Par [rt1, · · · , rtn], u) = Par [Assign u rt1, · · · , Assign u rtn]
applyAssign(Leaf (Cond p c), u) = Leaf (Cond p (Assign u r))
applyAssign(Assign u2 rt, u1) = Assign u2 rt
applyAssign(Leaf r, u) = Leaf (u@r)
applyAssign(Empty, u) = Empty

(C) Definition of applyAssign

FIGURE 2.7: auxiliary definitions

This completely describes our trace semantics.

2.5 Solving algorithms

For the purpose of constructing hints, traces are of limited interest. A
RuleTree includes all steps that can be taken, and therefore possibly also
incorrect steps. Instead, we would like to obtain traces that end in a state
that satisfies the goal the user is trying to reach.

To achieve this, we develop several solving algorithms. All algorithms
return traces that may not completely apply the RuleTree, as opposed to
traces, which only returns traces that have fully applied the RuleTree.

2.5.1 Breadth First Trace

The first algorithm we introduce is a breadth first trace algorithm. It per-
forms a breadth first search, to find a state that satisfies the goal condition g.
Fig. 2.9 lists its definition.

22 Chapter 2. A multi-user feedback framework

traces : RuleTree a× a→ P(Trace a)
traces (rt, s) =
{State s | E (rt)}
∪{s R̄−→ x | (R̄, rt′) ∈ F (rt, s), x ∈ traces (rt′, R̄ · s)} F (rt, s) ,
∅ F (rt, s) =

FIGURE 2.8: Definition of the traces function.

BFTrace : Goal a× RuleTree a× a→ P(Trace a)
BFTrace (g, rt, s)
| g s
7→ {State s}

| ¬g s, ∃(R̄, rt′, s′) ∈ expand (rt, s) : g s′

7→ {s R̄−→ State s′ | (R̄, rt′, s′) ∈ expand (rt, s), g s′}
| ¬g s, ∀(R̄, rt′, s′) ∈ expand (rt, s) : ¬(g s′)

7→ {s R̄−→ x | (R̄, s′, rt′) ∈ expand (rt, s), x ∈ BFTrace (g, rt′, s′)}

FIGURE 2.9: BFTrace search algorithm definition

Going over the definition from top to bottom, one of three cases applies.

• If the goal is satisfied, the set containing only the current state is
returned.

• If there exists one or more expansions that satisfy the goal, the traces
that belong to those expansions are returned.

• If none of the expansions satisfies the goal test, BFTrace is called
recursively.

2.5.2 Heuristic Trace

A possible disadvantage of the breadth first trace is that it expands all traces,
and can be very slow or even infeasible, depending on the complexity of
the problem. An often used solution is to perform a best first search. This
method uses a heuristic function to score each expansion, and then selects
the best state to further expand. If in the set of current expanded traces e
there is an expansion that fulfils the goal condition, it is returned, else we
recurse on the expansions that have the lowest heuristic score. The definition
of our heuristic trace function is given in Fig. 2.10.

2.6. Implementation 23

hTrace : (Goal a)× (a→ Integer)×P(RuleTree a× a× Trace a)
→ P(Trace a)

hTrace (g, h, e) | ∃(rt, s, x) ∈ e : g s 7→ {x | (rt, s, x) ∈ e, g s}
| ∀(rt, s, x) ∈ e : ¬g s 7→ hTrace (g, h, lowExp∪ high)

where

high = {(rt, s, x) | (rt, s, x) ∈ e, ∀(_, si, _) ∈ e : h s > h si}
low = {(rt, s, x) | (rt, s, x) ∈ e, ∃(_, si, _) ∈ e : h s ≤ h si}
lowExp = {(rt′, s′, x R̄−→ State s′) | (rt, s, x) ∈ low

, (R̄, rt′, s′) ∈ expand (rt, s)}

FIGURE 2.10: hTrace search algorithm definition

hTrace takes as argument a tuple containing the goal test g, a heuristic
scoring function h and the set of current expansions e. We require h to a
monotonically decreasing function, which returns a lower value as the state
comes closer to the desired goal g. Initially, this set will contain only one
element, namely (rt, s, Leaf s), where rt is the initial RuleTree, s the initial
state, and Leaf s the trace that just contains the current state. If the set of
current expansions contains one or more traces that lead to the goal, the
algorithm returns those traces. If none of the expansions lead to the goal, the
expansions are scored using the scoring function h, and divided into two
sets, one containing the highest scoring expansions, and one containing the
others. The highest scoring expansions are then expanded. hTrace is called
recursively on the union of the expanded traces and the low scoring traces.

2.6 Implementation

Our framework has been implemented in Haskell. Haskell is a purely func-
tional programming language. It has a static type system and lazy eval-
uation. While this helps with the implementation, it is not crucial to the
realisation of the system.

Listing 2.1 lists the types of the functions that correspond to the functions
described in Sections 2.3 to 2.5. The full implementation can be found
online 1.

We have also implemented two examples that use the framework to
generate hints: Tic Tac Toe and a command and control system. Both exam-
ples are included in the full implementation available online. We discuss

1https://github.com/niconaus/rule-tree-semantics

24 Chapter 2. A multi-user feedback framework

firsts :: Eq a => RuleTree a -> a -> Maybe [(RuleSet a, RuleTree a)]
empty :: RuleTree a -> Bool
expand :: Eq a => RuleTree a -> a -> Maybe [(RuleSet a,a,RuleTree a)]
traces :: Eq a => RuleTree a -> a -> [Trace a]

BFTrace :: Eq a => (Goal a) -> [(RuleTree a, a, [(a,RuleSet a)])]
-> [Trace a]

heuristicTrace :: Eq a => (Goal a) -> (a -> Int)
-> [(RuleTree a, a, [(a,RuleSet a)])] -> [Trace a]

LISTING 2.1: Type signatures of the framework implementation

the command and control example in the following section. Chapter 3 lists
several other examples, and lists applications of the framework beyond the
workflow domain.

2.6.1 Properties of the traces function

To validate our definition of F , E , expand and traces, we want to show
them to be correct.

We do this by verifying the traces function to be sound and correct with
respect to the RuleTree application semantics.

We consider traces to be sound if, for any RuleTree rt and initial state s,
there exists an end state in the result of rt · s that is equal to the end state
reached by every trace in traces(rt, s).

We consider traces to be complete if for all elements in the set of end
states from the application of the RuleTree, there exists an element from
traces, such that the end state of this trace is equal to the element of the end
state set. Instead of showing soundness and completeness separately, we
verify Conjecture 2.6.1, from which we can deduce the two.

Conjecture 2.6.1 (Correctness of traces)
For all RuleTrees rt and states s we have:
{sn | s

R̄1−→ · · · R̄n−→ sn ∈ traces (rt, s)} = rt · s.

We verify that our implementation works correctly by testing the cor-
rectness properties as formulated in Conjecture 2.6.1, using QuickCheck
(Claessen & Hughes, 2000). QuickCheck generates random test cases for
properties, based on the type signature of the input of a property. The
translation of this Conjecture to Haskell is listed in Listing 2.2.

2.6. Implementation 25

rtEquality :: RuleTree [Int] -> [Int] -> Property
rtEquality rt s = (fromList (traceS rt s)) === (fromList (appS rt s))

LISTING 2.2: Correctness property Conjecture 2.6.1 expressed in Haskell

Janeway

Chakotay

Extinguisher Fire

FIGURE 2.11: Rendering of an example initial state for the simplified Command &
Control system with two workers: Janeway and Chakotay

2.6.2 Command & Control system

We take a look at a Command & Control application that was developed in
cooperation with the Netherlands Royal Navy (Stutterheim et al., 2016). The
goal of this application is to model workflows on board a navy ship. This
includes workers, sensors, mission goals, resources and systems. Tasks can
be assigned to users working on the vessel, and sensors are used to monitor
the current situation.

For the sake of this example, we use a simplified version of the complete
ship application. Workers can walk around the ship. When a fire breaks out,
the workers have to walk to an extinguisher, pick it up, walk to the fire, and
put it out. A visual representation of this example is shown in Fig. 2.11.

The code below shows how we describe the problem in our DSL. Only
the most important definitions are given. For the goal and heuristic func-
tions, only the type signature is given here. The complete definitions can be
found online 2.

data SimulationState = SimulationState [[Room]] (M.Map User Agent)

data User = User String
data Agent = Agent RoomNumber -- Current position

Inventory
User -- User that controls Agent

data Room = Room RoomNumber
(Int,Int) -- Room coordinates
[Exit] -- Rooms it has doors to
Inventory

2https://github.com/niconaus/rule-tree-semantics

26 Chapter 2. A multi-user feedback framework

RoomState
Int -- Room depth

data Exit = ENorth RoomNumber
| EEast RoomNumber
| ESouth RoomNumber
| EWest RoomNumber

data Inventory = NoItem | Extinguisher
data RoomState = Normal | Fire

shipTree :: RuleTree SimulationState
shipTree = Parallel (map (\usr -> Assign usr (shipSimulation usr))

[Janeway, Chakotay])

shipSimulation :: User -> RuleTree SimulationState
shipSimulation usr
= times 10

(Choice
[Leaf (Condition (canPickup usr) (pickUp usr))
, Leaf (Condition (canExtinguish usr)
, Choice (map (\x -> (Leaf

(Condition (canMove usr)
(Rule (show x) (applyMove usr x)))))

[1..10])])

shipNotOnFire :: Goal SimulationState
shipHeuristic :: SimulationState -> Int

solveShip = heuristicTrace shipNotOnFire [(shipTree, shipState, [])]

The first line models the state, and shipTree expresses the RuleTree,
with the help of shipSimulation.

Assuming the system itself is also implemented in Haskell, the existing
code from the implementation can be used when defining the RuleTree.
Functions like pickUp, canExtinguish and applyMove can be the exact same
code as the system implementation.

shipNotOnFire is the goal condition, and shipHeuristic is the heuristic
used to score each state. To solve this problem, we plug these functions into
the generic heuristicTrace algorithm, together with the RuleTree and a
state, as shown on the last line. When we execute solveShip, we get back a
trace that will lead the workers on the ship to the quickest way to extinguish
all fires, if possible. If there is only a single fire, instructions for only one
user will be generated. If there are multiple fires, both workers will perform
actions at the same time, as described by the ruleTree.

2.7. Conclusions 27

This example clearly shows the advantage of our system: a programmer
only needs to define the problem by describing it as a ruleTree, possibly
reusing existing code, come up with a goal function and a heuristic, and
then gets an adaptive, multi-user solver for free.

2.7 Conclusions

In this chapter, we have demonstrated how to construct a complete and
sound framework for calculating hints for multi-user workflow systems.
By means of a DSL, we are able to describe problems in a uniform way,
and make them tractable to generic solving algorithms. These algorithms
produce traces that lead to the goal of the user. Besides a formal system, we
have also presented a practical implementation. We have implemented two
examples, one of which we have described in this chapter.

2.8 Related work

2.8.1 Rule-based problem modelling

We follow in a long tradition of creating (domain-specific) languages that
allow programmers to model rule-based problems, such as planning prob-
lems. Some of the early languages written for this purpose are STRIPS (Fikes
& Nilsson, 1971), PLANNER (Hewitt, 1969) and SITPLAN (Galagan, 1979).
Most of these are based on the same principles as our approach, namely to
describe state, operator set and goal test. For example, a STRIPS problem
is defined as 〈P, O, I, G〉, where P is the set of states the problem can be in,
O the set of operators, I is the initial state, and G the goal state (Bylander,
1994).

A more recent language is PDDL (McDermott et al., 1998). Version one
of the language, from 1998, consists of a domain description, action set,
goal description and effects. Again, these ideas coincide with our notion
of a problem formalization. The PDDL standard has been updated several
times (Kovacs, 2011), and there are many variants currently in use. These
variants include MA-PDDL (Kovacs, 2012), which can deal with multiple
agents, and PPDDL (Younes & Littman, 2004), which supports probabilistic
effects.

The language we present is different from all of the aforementioned
languages in several ways. Our language is a DSL, embedded in Haskell.
This means that the programmer can use the full power of Haskell when
constructing the problem description in our DSL. The languages mentioned

28 Chapter 2. A multi-user feedback framework

above are not embedded in any language and therefore the programmer is
limited to the syntax of the DSL in constructing the problem description.
Another big difference is the fact that in all of the other languages mentioned,
except PDDL, the state-space is finite. For example, in SITPLAN, part of the
problem description is a finite set of possible situations, and in STRIPS, the
set of states is defined as finite a set of conditions that can be either true or
false. In our DSL, we do not limit the set of possible states. This allows us
to describe many more problems in our DSL, but at the same time makes
solving them harder.

The second part of our approach is to solve the problem described in
our DSL. When comparing to other approaches, both SITPLAN and PDDL
rely on general solvers, just like our approach. In fact, PDDL was initially
designed as a uniform language to compare different planning algorithms
in the AIPS-98 competition (McDermott et al., 1998). STRIPS and PLANNER
however, do include a specific solving algorithm.

For each of the frameworks that we discussed in this section, there has
been some research on generically solving problems. The Ideas framework
includes a set of feedback services to generate hints for the user. For example,
the basic.allfirsts service generates all steps that can be taken at a certain
point in the exercise (Heeren & Jeuring, 2014). For the iTasks framework,
a system was developed to inspect current executions by using dynamic
blueprints of tasks (Stutterheim, Achten, & Plasmeijer, 2015). It can give
additional insight in the current and future states, but does not act as a
hint-system and does not take a goal into account.

2.8.2 Workflow Analysis

There has been done some work on analysing instances of workflow systems.
Basu and Blanning present metagraph (Basu & Blanning, 2000) to describe
workflows so that they can be better evaluated. Other approaches apply
workflow mining to evaluate implementations (Aalst, 2011). Stutterheim et
al. (Stutterheim, Plasmeijer, & Achten, 2014) present a system for generating
visualisations from the source code of workflow systems implemented in
the iTasks workflow framework. Their system Tonic also features dynamic
inspection and limited path prediction. These approaches do not use their
analyses to assist the end-user. Instead they focus on workflow and business
optimisation from the system design perspective.

Research has also been done on systems that help end users in mak-
ing choices. These decision support systems usually leverage some artifi-
cial intelligence approach like probabilistic reasoning (Pearl, 1989) or plan-
ning (Kaelbling, Littman, & Cassandra, 1998). These are all solutions that

2.8. Related work 29

are custom made for a specific workflow system instance.
To our knowledge, we are the first to describe a workflow solving sys-

tem that works generically on a broad range of problems structured in a
workflow.

2.8.3 Decision Support Systems

A Decision Support System is defined as a system which models a cer-
tain domain and then assists the user in making choices by using analysis
techniques (Shim et al., 2002).

There exists a great variety in both domains where DSSs are applied, as
well as their implementation. Clinical DSSs support making decisions about
the treatment of individual patients (Berner & La Lande, 2007). There are
agricultural DSSs aimed to improve land use, planning and management of
soil (Rosa, Mayol, Díaz-Pereira, Fernandez, & Rosa Jr., 2004). The biggest
area of application is management and business (Turban, 1988). There, DSSs
help managers make the right choices faster, better allocate resources or
identify trends.

The basic design of a DSS consists of some representation of the domain,
a reasoning engine and a way to communicate with the user.

Using a DSS has many advantages (Power, 2002). It improves the pro-
ductivity of individuals, improves the quality of decisions and the speed
with which they are made. Organisational control is improved, as well as
communication between workers.

Employing a DSS comes with several challenges. First of all, there is
a large financial risk involved, since it requires a significant investment
(Power, 2002). The model that is used in the DSS limits the applicability of
the system. When the domain or the problem changes, the model needs to
be updated as well. Social issues may come up as well, workers may resist
the change that comes with a DSS.

2.8.4 Electronic Performance Support Systems

Electronic Performance Support Systems (EPSS) focus on workers or in-
dividuals that have to achieve a certain goal or complete a task, but who
do not yet have sufficient knowledge or are not sufficiently skilled yet.
They facilitate on the job training by providing the user with just-in-time
information on the task that they are working on (Schaik et al., 2002).

An EPSS is typically composed of a user interface, giving access to
generic tools like documentation and help systems, and application specific
support tools such as tutorials (Barker & Banerji, 1995). Usually, the EPSS is

30 Chapter 2. A multi-user feedback framework

geared towards the specific domain it is being used in, a certain business
setting for example.

An EPSS can provide workers with just in time information on how to
perform certain tasks. It cannot however assist hem in making decisions
based on the precise situation that they are in. Only general documentation,
help and guidelines can be offered.

The aim of our next-step hint system is not necessarily to provide train-
ing to workers, but to assist them with a specific goal and situation.

31

Chapter 3

Generating next-step hints for
tasks, puzzles and exercises

In Chapter 2, we have developed a multi-user generic feedback framework for
rule-based problems. In this chapter, we want to demonstrate that our approach can
be applied to different problems. These problems come from a broad range of domains,
namely computer games, intelligent tutoring systems (ITS) and workflow systems.
By targeting a framework from each of these domains, our solution is immediately
applicable to many problems formulated in one of these frameworks. We show that
it is indeed feasible to encode these problems, which are rather different in nature,
in our feedback framework, and that it is possible to calculate feedback. In all three
domains, providing feedback to end users is essential. In an ITS, feedback is used by
students to learn how to solve exercises, providing feedback to players of computer
games will keep them interested, and by providing feedback to users of a workflow
system, the quality of the choices they make will improve.

3.1 Introduction

This chapter demonstrates our goal of providing help to people using a
rule-based problem-solving system by giving examples from three different
domains: intelligent tutoring systems (ITS), computer games and work-
flows. We do this by targeting frameworks from these domains: the Ideas
framework (Heeren et al., 2010), PuzzleScript (Lavelle, 2016) and the iTasks
system (Plasmeijer et al., 2012). Each of these frameworks can describe a
variety of problems. We briefly introduce each framework, show an exam-
ple problem described in that framework, and then show how to solve the
problem by using the generic framework from the previous chapter.

32 Chapter 3. Generating next-step hints for tasks, puzzles and exercises

3.2 Ideas

The Ideas framework is used to develop services to support users when
stepwise solving exercises in an intelligent tutoring system for a domain like
mathematics or logic. It is a general framework used to construct the expert
knowledge of an intelligent tutoring system (ITS). The framework has been
applied in the domains of mathematics (Heeren et al., 2010), programming
(Gerdes, Jeuring, & Heeren, 2012), and communication skills (Jeuring et al.,
2015).

dnfStrategy = label "Constants" (repeat (topDown constants))
<*> label "Definitions" (repeat (bottomUp definitions))
<*> label "Negations" (repeat (topDown negations))
<*> label "Distribution" (repeat (somewhere distribution))

FIGURE 3.1: A problem-solving strategy in Ideas

The central component of the expert knowledge for an ITS is expressed
as a so-called strategy in Ideas. For example, Figure 3.1 gives part of a
strategy for the problem of rewriting a logic expression to disjunctive normal
form (for the complete strategy see Heeren et al. (Heeren et al., 2010)). The
framework offers various services based on this strategy, among which
a service that diagnoses a step from a student, and a service that gives
a next step to solve a problem. The student receives a logic expression,
and stepwise rewrites this expression to disjunctive normal form using
services based on the above strategy. At each step, the student can request a
hint, which will look something like “Eliminate constants” or “Eliminate
implications”, or ask for feedback on her current expression. If no rules can
be applied any more, the expression is in normal form.

The dnfStrategy describes a rule-based process that solves the problem
of converting an expression to disjunctive normal form. It is expressed
in terms of combinators like <*> (sequence), repeat and somewhere, and
other sub-strategies. Additionally, a label combinator is available, to label
sub-strategies with a name.

3.2.1 Using RuleTree to describe Ideas strategies

We have taken two examples, with different domains and problems, im-
plemented in Ideas: calculating the disjunctive normal form of a logic ex-
pression (see Fig. 3.2), and reducing a matrix to echelon form (see Fig. 3.3).
By implementing these strategies as RuleTrees, we demonstrate that our
framework can indeed be used in an ITS.

3.2. Ideas 33

Disjunctive Normal Form

Figure 3.2 gives the description of the disjunctive normal form exercise in
our DSL. This is almost a direct translation from the Ideas strategy given
above in Fig. 3.1.

dnf :: RuleTree Expr
dnf = Seq [repeat (Leaf constantsR), repeat (Leaf definitionsR)

, repeat (Leaf negationsR), repeat (Leaf distributionR)]

repeat :: RuleTree a -> RuleTree a
repeat rt =

Choice [Condition (not.(empty rt)) (Seq [rt, repeat rt])
, Condition (empty rt) Empty]

FIGURE 3.2: DNF exercise in our DSL

Fig. 3.2 shows the RuleTree for the DNF strategy. The state is modelled
by expressions of type Expr, representing the current state of the exercise of
the student. To encode it compactly, an additional function is used called
repeat. This function checks if the RuleTree is non empty. If so, the RuleTree
can be applied, after which repeat rt is called again. If not, the Empty
RuleTree is returned and this will end the recursion. This means that the
RuleTree that repeat is applied to, should have an effect on the condition,
otherwise this recursion will never terminate.

The RuleTree is all that is required to build the hint-function. Since all
steps offered by the RuleTree are on a path to the goal, we can just return
them by using the RuleTree algorithm.

The hint function below takes an expression of type Expr representing
the current state, and returns steps that can be taken at this point. If no steps
are returned, the exercise is solved.

hint :: Expr -> [RuleSet Expr]
hint e = map fst (maybeToList (firsts dnf e))

The RuleTree dnf potentially does not terminate, since it relies on repeat.
This is not a problem however, since a hint is produced by simply returning
the first steps that are available.

Gaussian Elimination

Our second example is in the domain of linear algebra. The exercise at hand
is to reduce a matrix to echelon form, using Gaussian elimination.

34 Chapter 3. Generating next-step hints for tasks, puzzles and exercises

toReducedEchelon = label "Gaussian elimination"
(forwardPass <*> backwardPass)

forwardPass = label "Forward pass" (
repeat (

label "Find j-th column" ruleFindColumnJ
<*> label "Exchange rows" (try ruleExchangeNonZero)
<*> label "Scale row" (try ruleScaleToOne)
<*> label "Zeros in j-th column" (repeat ruleZerosFP)
<*> label "Cover up top row" ruleCoverRow))

backwardPass = label "Backward pass" (
repeat (label "Uncover row" ruleUncoverRow

<*> label "Sweep" (repeat ruleZerosBP)))

FIGURE 3.3: Gaussian elimination strategy in Ideas

Figure 3.3 lists the strategy of Gaussian elimination that is used in the
Ideas framework. It describes what steps must be applied to a matrix to
transform it to the reduced echelon from, by means of Gaussian elimination.

The forward pass is applied to the matrix as often as possible. When this
procedure no longer applies, the backwards pass is applied exhaustively.
If no rules from either two phases apply, the matrix has been reduced. We
leave out the exact details of what each rule in the passes does, they are
available elsewhere (Heeren et al., 2010).

To describe the strategy in a similar way in our DSL, we need to in-
troduce one new function to deal with try. Figure 3.4 lists the complete
description of Gaussian elimination in our DSL, together with our try
definition.

try takes a rule, and then checks if the rule has an effect if it is applied by
means of the canApply function. If it has an effect, the rule can be selected.
Otherwise the empty RuleTree is returned.

Since we are again dealing with a RuleTree where all the offered steps
are on a path to the goal, no goal test function is needed to build the hint-
function.

hint :: Expr -> [Name]
hint e = map fst (maybeToList (firsts toReducedEchelon e))

As with the DNF example, applying firsts to the RuleTree and current
expression instantiates the hint-function.

3.3. PuzzleScript 35

toReducedEchelon :: RuleTree Expr
toReducedEchelon = Seq [forwardPassRT, backwardsPassRT]

forwardPassRT = repeat Seq [Leaf ruleFindColumnJ
,tryRule ruleExchangeNonZero
,tryRule ruleScaleToOne
,repeat (Leaf ruleZerosFP)
,Leaf ruleCoverRow]

backwardPassRT = repeat Seq [Leaf ruleUncoverRow
, repeat (Leaf ruleZerosBP)]

try :: Rule a -> RuleTree a
try rule = Choice [Condition (canApply rule) (Leaf rule)

, Condition (not.(canApply rule)) Empty]

canApply :: Rule a -> a -> Bool
canApply (Rule n e) s = (e s) /= s

FIGURE 3.4: Gaussian elimination exercise in our DSL

3.3 PuzzleScript

PuzzleScript is an open source HTML5 Puzzle Game Engine (Lavelle, 2016).
It is a simple scripting language for specifying puzzle games. Its central
component is a DSL for describing a game. PuzzleScript compiles a puzzle
described in this DSL into an HTML5 puzzle game. Using the DSL, the
game programmer describes a puzzle as a list of objects, rules that define
the behaviour of the game, a win condition, collision information, and one
or more levels.

The hello-world example for PuzzleScript is given in Figure 3.5. It de-
scribes a simple crate-pusher game, also called Sokoban. Objects are: back-
ground, walls, crates, the player and the targets for the crates. There is a
single rule that states if a player moves into a crate, the crate moves with
the player. Objects appearing on the same line in the collision layers are
not allowed to pass through each other. The winning condition is reached
when all targets have a crate on them. Finally, a start-level is specified under
LEVELS.

In a difficult game, we want to offer next-step hints to the player on how
to proceed. Based on the state of the game, the RULES, COLLISIONLAYERS and
WINCONDITIONS, an algorithm can calculate a hint for a user (Lim & Harrell,
2014). This same information can also be used to check if a game can still
be solved in the current state. For example, the game cannot be solved any

36 Chapter 3. Generating next-step hints for tasks, puzzles and exercises

========
OBJECTS
========

Background
Green

Target
DarkBlue

Wall
Brown

Player
Blue

Crate
Orange

=======
LEGEND
=======

. = Background
= Wall
P = Player
* = Crate
@ = Crate and Target
O = Target

=============
COLLISIONLAYERS
=============

Background
Target
Player, Wall, Crate

======
RULES
======

[> Player | Crate]
-> [> Player | > Crate]

============
WINCONDITIONS
============

All Crate on Target

===========
LEVELS
===========

#
.
. @ .
. P . * . O .
.
.
#

FIGURE 3.5: Partial definition of the hello-world example of PuzzleScript

more if a crate gets stuck in a corner.

3.3.1 Solving Sokoban

Figure 3.6 lists the RuleTree for Sokoban. We first define GameState which
models our state. It contains the LevelState, as well as the position of the
player pX,pY. sokoban defines the RuleTree. In sequence, it offers choice
from one of the four moves, and then recurses. All moves are conditional,
they can only be chosen if they can actually be applied. We only supply the
types of the functions validMove and applyMove.

On first attempt, we take the breadth first search algorithm BFTrace, and
use it to construct our hint-function. For trivial levels, this suffices, but once
we try to generate hints for levels where a solution consists of 15 moves, we
have to explore 315 ≈ 1.4× 107 states, assuming that there are on average
three valid moves per state.

3.3. PuzzleScript 37

data GameState = {lvl :: LevelState , pX :: Int , pY :: Int}
type LevelState = [[[GameObject]]]
data GameObject = Target | Wall | Player | Crate

sokoban :: RuleTree GameState
sokoban = repeat (Choice [move "Move Left" LeftMove

, move "Move Right" RightMove
, move "Move Up" UpMove
, move "Move Down" DownMove])

move :: String -> GameMove -> RuleTree GameState
move name step = Condition (validMove step)

(Leaf (Rule name (applyMove step)))

sokobanGoal :: GameState -> Bool

validMove :: GameMove GameState -> Bool
applyMove :: GameMove GameState -> GameState

FIGURE 3.6: Sokoban in our DSL

Breadth first search clearly will not work. We have to come up with
something a bit more informed. Literature on Sokoban (Junghanns & Scha-
effer, 1997) points to heuristics and search space pruning to help us order
and restrict the search space, and construct a hint-function. Lim and Harrell
have generalized these Sokoban heuristics to apply to most PuzzleScript
games (Lim & Harrell, 2014).

We implement a simple deadlock pruning filter to improve performance.
A simple deadlock occurs when a crate is in an unsafe position, from where
it will never reach a target. Removing these states reduces the search space.

Implementing heuristics for Sokoban, like the mentioned work suggests,
can be quite involved. This is beyond the scope of this chapter, but could be
implemented using the heuristicHint algorithm.

To perform simple deadlock detection, we first build a list of positions
from where we will never reach a target. To do this, we find all the corners in
the game. After locating the corners, we generate a list of all horizontal and
vertical paths from corner to corner. Paths that are not along a wall, or that
have walls or targets on them, are removed. The cells on the remaining paths,
together with the corners, form the list of unsafe positions. To determine if
a state has a deadlock, we simply inspect all unsafe positions. If a state has
a crate on an unsafe position, it is removed and thus not further expanded.

Below, the hint function is implemented. For the simple deadlock prun-
ing function, we only provide the type.

38 Chapter 3. Generating next-step hints for tasks, puzzles and exercises

noDeadlock :: GameState -> Bool

BFTFilter :: (a -> Bool) -> (a -> Bool) -> RuleTree a -> a
-> [RuleSet a]

hint :: GameState -> Name
hint state = map fst (maybeToList (

BFTFilter (\ (b,_,_) -> noDeadlock b)
sokobanGoal
sokoban
state))

The function BFTFilter is a variant of the BFTrace function that takes as
an additional argument, a pruning function from state to boolean. Only its
type is provided.

3.4 iTasks

iTasks (Plasmeijer et al., 2012) supports task-oriented programming in the
pure functional programming language Clean (Plasmeijer, van Eekelen, &
van Groningen, 2002). It allows for rapid workflow program development,
by using the concept of task as an abstraction. Clean is very similar to
Haskell, with a few exceptions. A data declaration starts with ::, types of
function arguments are not separated by a function arrow (->) but by a
space, and class contexts are written at the end of a type, starting with a ||.

An iTasks program is composed out of base tasks, task combinators, and
standard Clean functions. A task is a monadic structure. Its evaluation is
driven by events and handling an event potentially changes a shared state.
Tasks can be combined using combinators. The most common combinators
are >>= (sequence), >>* (step), -||- (parallel) and -&&- (choice). The step
combinator can be seen as a combination of sequence and choice. It takes a
task and attaches a list of actions to it, from which the user can choose. The
chosen action receives a result value from the first task. The action, which
is of type TaskStep, is a regular task combined with an action to trigger it,
and a condition that must hold for the action to be available.

3.4.1 Solving a sliding puzzle

To demonstrate and experiment with iTasks, we implement a simple sliding
puzzle (also called n-puzzle).

Figure 3.7 gives the (partial) source code of the iTasks program that we
constructed. In this puzzle, the player arranges all tiles in order, by using
the hole to slide the tiles over the board, as shown in Figure 3.8.

3.4. iTasks 39

:: GameState = { board :: [Int], dim :: Int, hole :: Int}
:: Dir = North | East | South | West
boardStore :: Shared GameState

slidePuzzle :: Task GameState
slidePuzzle =
viewSharedInformation "Sliding Puzzle" [ViewWith viewBoard] boardStore
>>* map (\dir -> OnAction (Action (toName dir) [])

(ifValue (checkStep dir)
(\st -> set (applyStep dir st)
boardStore >>| slidePuzzle)))

[North, East, South, West]

viewBoard :: GameState -> HtmlTag
checkStep :: Dir GameState -> Bool
applyStep :: Dir GameState -> GameState

FIGURE 3.7: Sliding puzzle program written in iTasks

4 8 6

1 7

2 5 3

(A) Initial state

1 2

3 4 5

6 7 8

(B) Goal state

FIGURE 3.8: Instance of a block sliding puzzle, of dimension 3 x 3

40 Chapter 3. Generating next-step hints for tasks, puzzles and exercises

slidePuzzle :: RuleTree GameState
slidePuzzle = repeat Choice [slide "Move up" North

, slide "Move down" South
, slide "Move left" West
, slide "Move right" East]

slide :: String Dir -> RuleTree GameState
slide name direction = Condition (checkStep direction)

(Rule name (applyStep direction))

goalTest :: GameState -> Bool
goalTest {board, dim} = [0..((dim*dim)-1)] == board

FIGURE 3.9: Sliding puzzle in our DSL

The record type GameState holds the board configuration, the dimension
of the puzzle, and the position of the hole. Dir defines the kind of moves a
player can perform and slidePuzzle implements the puzzle.

slidePuzzle uses the standard task for viewing information to display
the current state. Then, it uses the step combinator >>* to combine the
viewing task with the tasks offering the possible options for moving the
hole. We use a map to generate the four options a player can choose from.

The goal of the puzzle is to move all tiles in positions so that they appear
in order, as shown in Figure 3.8b. We now want to add hints to the iTasks
program that indicate to the user which step to take next in order to solve
the puzzle. If a player gets stuck, she can ask for help.

Figure 3.9 lists the RuleTree and goalTest for the sliding puzzle. The
functions checkStep and applyStep are the same Clean functions used by
the iTasks implementation. The only additional function needed is the
goalTest, that compares the current board to the solution-state.

The n-puzzle problem is too complex to apply a brute force algorithm.
An 8-puzzle for example has an average branching factor of 2.67 (Luger,
2005), and an average solution length of 21.97 (Reinefeld, 1993). We can
calculate that we have to visit 2.6721.97 ≈ 3.39× 108 states on average before
a solution is found using brute force search.

This calls for a more informed algorithm. Russell and Norvig propose
two different heuristics for the n-puzzle problem (Russell & Norvig, 2010).
The first, h1, is the number of tiles out of place. The second heuristic h2 is
the sum of the (Manhattan) distances of the tiles from their goal positions.
For our purposes, just using the first heuristic h1 already suffices. With help
of h1, we can construct the following hint function.

hint :: GameState -> [Trace a]

3.5. Conclusion 41

hint = heuristicTrace goalTest h1 [(slidePuzzle, state,[])]

h1 :: GameState -> Int
h1 {board, dim} = boardDiff board [0..((dim*dim)-1)]

where
boardDiff [] [] = 0
boardDiff [x:xs] [y:ys] | x /= y = 1 + boardDiff xs ys

| True = boardDiff xs ys

The function h1 works as follows. As an argument, it receives the current
GameState which contains the board and its dimension (dim). It then calls
the function boardDiff which calculates the distance between two boards.
As arguments, the current board and the solution ([0..((dim*dim)-1)]) are
provided.

To build the hint function, we use the heuristic trace function instead of
breadth first search. This expands the state space in an ordered way.

We can now run the hints function as an iTasks program in parallel with
the original program, to provide hints to end users in the same view. With
this solution, we can calculate hints for each possible state of a game with a
dimension of three. Solving bigger games may require implementing the
additional heuristic h2.

3.5 Conclusion

In this chapter, we have demonstrated that the multi-user generic feedback
framework from Chapter 2 can be applied to different problems from a
broad range of domains. For each of the problems, we have defined a
hints function that calculates next-step hints for end users. The problems
discussed in this chapter come from three different frameworks, each from
a different domain. Below, we state our conclusions per framework.

3.5.1 Ideas

By implementing two example problems from the Ideas framework, we
have shown that our framework can function as an alternative implemen-
tation of the Ideas framework. The strategies can be directly translated
into our DSL. Implementing the auxiliary functions like repeat and try,
defined by Ideas, is quite simple. All other ideas combinator functions can
be implemented as well. Once the strategies have been defined, it only takes
a single line of code to compute next-step hints.

We are now able to do everything the ideas framework can do, and more.
Ideas calculates hints by applying the strategy that is defined to solve the

42 Chapter 3. Generating next-step hints for tasks, puzzles and exercises

exercise. Our framework however can also take into account the specific
goal the learner wants to achieve. For example, she wants to arrive at a
certain specific solution, when multiple solutions are possible.

3.5.2 PuzzleScript

We have implemented one example problem from the open source Puzzle
Game Engine PuzzleScript in our framework. For this game, Sokoban, we
are able to compute next-step hints for rather complex problems, by filtering
out configurations that are stuck. By implementing this example, we have
shown that we are not only capable to deal with exercises and workflows,
but can also accommodate puzzles and games.

3.5.3 iTasks

In Chapter 2, we have already demonstrated that we are able to encode
workflow problems in our framework. We further substantiate this claim by
implementing a second example, the n-puzzle, in our framework.

43

Part II

Task-oriented programming &
automatic hint generation

45

Chapter 4

An example-based introduction
to task-oriented programming

Software that models how people work is omnipresent in today’s society. Cur-
rent languages and frameworks often focus on usability by non-programmers,
sacrificing flexibility and high-level abstraction. Task-oriented programming (TOP)
is a programming paradigm that aims to provide the desired level of abstraction
while still being expressive enough to describe real world collaboration. It prescribes
a declarative programming style to specify multi-user workflows. Workflows can
be higher-order. They communicate through typed values on a local and global
level. Such specifications can be turned into interactive applications for different
platforms, supporting collaboration during execution. This chapter describes the
TOP paradigm by example. We will use this description to develop a formal TOP
semantics, symbolic execution to verify properties, and a next-step hint system for
workflow systems over the coming chapters.

4.1 Introduction

Many applications these days are developed to support workflows in in-
stitutions and businesses. Take for example expense declarations, order
processing, and emergency management. Some of these workflows occur
on the boundary between organisations and customers, like flight bookings
or tax returns. What they all have in common is that they need to interact
with different people (medical staff, tax officers, customers, etc.) and they
use information from multiple sources (input forms, databases, sensors,
etc.).

4.1.1 Task-oriented programming

Task-oriented programming (TOP) is a programming paradigm that targets
the sweet spot between faithful modelling workflows and rapid prototyping

46 Chapter 4. An example-based introduction to TOP

of multi-user web applications supporting these workflows (Plasmeijer et
al., 2012). TOP focusses on modelling collaboration patterns. This gives rise
to a user’s need to interact and share information. Next to that, TOP auto-
matically provides solutions to common development jobs like designing
GUIs, connecting to databases, and client-server communication.

Therefore, a language that supports TOP should choose the right level
of abstraction to support two things. Firstly, it should provide primitive
building blocks that are useful for high-level descriptions of how users
collaborate, with each other and with machines. These building blocks are:
editors, composition, and shared data. Secondly, it should be able to generate
applications, including graphical user interfaces, from workflows modelled
with said building blocks.

Users can work together in a number of ways, and this is reflected in
TOP by task compositions. There is sequential composition, parallel compo-
sition, and choice. Users need to communicate in order to engage in these
forms of collaboration. This is reflected in TOP by three kinds of commu-
nication mechanisms. There is data flow alongside control flow, where the
result of a task is passed onto the next. There is data flow across control
flow, where information is shared between multiple tasks. Finally, there is
communication with the outside world, where information is entered into
the system via input events and output is returned via observations. The
end points where the outside world interacts with TOP applications are
called editors. In generated applications, editors can take many forms, like
input fields, selection boxes, or map widgets.

4.1.2 Implementations of TOP

Currently, we know of two frameworks that implement TOP: iTasks and
mTasks. iTasks is an implementation of TOP, in the form of a shallowly
embedded domain-specific language in the lazy functional programming
language Clean. It is a library that provides editors, monadic combinators,
and shared data sources. iTasks uses the generic programming facilities of
Clean to derive rich client and server applications from a single source. It
has been used to model an incident management tool for the Dutch coast
guard (Lijnse et al., 2012). Also, it has been used to prototype ideas for
Command and Control systems (Kool, 2017; Stutterheim, 2017), and in a
case study for the Dutch tax authority (Stutterheim et al., 2017).

mTasks is a subset of iTasks, focusing on IOT devices and deployment on
micro controllers. It has been used to control home thermostats and other
home automation applications (P. Koopman et al., 2018).

4.2. TOP by example 47

4.1.3 Challenges

Both iTasks and mTasks have been designed for developing real-world
applications. They are constantly being extended and improved with this
goal in mind. The different variations of task combinators and the details
that come with real-world requirements, make it hard to see what the
essence of TOP is.

In this chapter, we want to take a step back and look at the essence of
TOP. We will use this description to develop a next-step hint system for
workflow systems over the coming chapters. In Chapter 5, we present a
formal TOP semantics. This paves the way for formal reasoning about TOP
software. In Chapter 6, we will develop a symbolic execution framework
based on the formal semantics that allows us to prove properties over TOP
programs. The symbolic execution framework also powers the automatic
next-step hint generation system presented in Chapter 7.

4.2 TOP by example

This section gives an overview of the abilities of tasks in the task-oriented
programming paradigm.

4.2.1 Tasks model collaboration

The central objective of TOP is to coordinate collaboration. The basic building
blocks of TOP for expressing collaboration are task combinators. They
express ways in which people can work together. Tasks can be executed
after each other, at the same time, or conditionally. This motivates the
combinators step, parallel, and choice.

Example 4.2.1 (Breakfast)
The following program shows the different collaboration operators in the setting
of making breakfast. Users have a choice (♦) whether they want tea or coffee. They
always get scrambled vegetables. The drink and the food are prepared in parallel
(Z). When both the drink and the food are prepared, users can step (B) to eating the
result.

let mkBrkfst : Task Drink→ Task Food→ Task 〈Drink,Food〉
= λmkDrink. λmkFood. mkDrink Z mkFood in

mkBrkfst (mkTea ♦ mkCo�ee) mkVeganScramble
B enjoyMorning

48 Chapter 4. An example-based introduction to TOP

The way the combinators are defined matches real life closely. When we want
to have breakfast, we have to complete several other tasks first before we can do
so. We decide what we want to have and then prepare it. We can prepare the
different items we have for breakfast in parallel, but not at the same time. For
example, it is impossible to make scrambled vegetables, and put on the kettle for tea
simultaneously. Instead, what is meant by parallel is that the order in which we
do tasks and the smaller tasks that they are composed of, does not matter.
Then finally, only when every item we want to have for breakfast is ready, can we
sit down and enjoy it.

4.2.2 Tasks are reusable

There are three ways in which tasks are modular. First, larger tasks are com-
posed of smaller ones. Second, tasks are first-class, they can be arguments
and results of functions. Third, tasks can be result values of other tasks.
These aspects make it possible for programmers to model custom collabora-
tion patterns. Example 4.2.1 demonstrates how tasks can be parameterised
by other tasks: mkBrkfst is a collaboration pattern that always works the
same way, regardless of which food and drink are being prepared.

4.2.3 Tasks are driven by user input

Input events drive evaluation of tasks. The application of a valid event
to the current task, results in a new task. This is how TOP communicates
with the environment. Inputs are synchronous, which means the order of
execution is completely determined by the order of the inputs.

In TOP, editors are the basic method of communication with the en-
vironment. Editors are modelled after input widgets from graphical user
interfaces. There are different editors, denoted by different box symbols.
Take for example an editor holding the integer seven: � 7. Such an editor
reacts to change events, for example the values 42 or 37, which are of the
same type.

The sole purpose of editors is to interact with users by remembering the
last value that has been sent to them. There are no output events. As values
of editors can be observed, for example by a user interface, editors facilitate
both input and output. An empty editor (�) stands for a prompt to input
data, while a filled editor (�) can be seen either as outputting a value, or as
an input that comes with a default value.

Example 4.2.2 (Vending machine)
The following example demonstrates the use of external communication and choice.

4.2. TOP by example 49

We have a vending machine that dispenses a biscuit for one coin and a granola bar
for two coins.

�Int B λn. if n ≡ 1 then �Biscuit else if n ≡ 2 then �GranolaBar else

The editor � Int asks the user to enter an amount of money. This editor stands
for a coin slot in a real machine that freely accepts and returns coins. There is a
continue button on the machine, which sends a continue event to the step combi-
nator (B). The button is initially disabled, due to the fact that the editor has no
value. When the user has inserted exactly 1 or 2 coins, the continue button becomes
enabled. When the user presses the continue button, the machine dispenses either a
biscuit or a chocolate bar, depending on the amount of money. Snacks are modelled
using a custom type.

4.2.4 Tasks can be observed

Several observations can be made on tasks. One of those is determining the
value of a task. Not all tasks have a value, which makes value observation
partial. I.e., the value of � 7 is 7, but the value of � Int is ⊥.

Another observation is the set of input events a task can respond to. For
example, the task � 7 can respond to value events, as discussed before.

To render a task, we need to observe a task’s user interface. This is
done compositionally. User interfaces of combined tasks are composed of
the user interfaces of the components. For example, if two tasks combined
with a step combinator, only the left-hand side is rendered. Two parallel
tasks are rendered next to each other. Combining this information with the
task’s value and possible inputs, we can display the current state of the task,
together with buttons that show the actions a user can engage in.

The final observation is to determine whether a task results in a failure,
denoted by . The step combinator B and the choice combinator ♦ use this
to prevent users from picking a failing task.

4.2.5 Tasks are never done

Tasks never terminate, they always keep reacting to events. Editors can
always be changed, and step combinators move on to new tasks.

In a step tB e, the decision to move on from a task t to its continuation e
is taken by B, not by t. The decision is based on a speculative evaluation of
e. The step combinator in tB e passes the value v of t to the continuation e.
Steps act like t as long as the step is guarded. A step is guarded if either the

50 Chapter 4. An example-based introduction to TOP

left task has no value, or the speculative evaluation of e applied to v yields
the failure task . Once it becomes unguarded, the step continues as the
result of e v. Speculative evaluation is designed so that possible side effects
are undone.

Step combinators give rise to a form of internal communication. They
represent data flow that follows control flow.

4.2.6 Tasks can share information

The step combinator is one form of internal communication, where task
values are passed to continuations. Another form of internal communication
is shared data. Shared data enables data flow across control flow, in particular
between parallel tasks. Shared data sources are assignable references whose
changes are immediately visible to all tasks interested in them. Users cannot
directly interact with shared data, a shared editor is required for that. If x is
a reference of type τ, then � x is an editor whose value is that of x.

The semantics of TOP requires all updates to shared data and all enabled
internal steps to be processed before any further communication with the
environment can take place.

Example 4.2.3 (Cigarette smokers)
The cigarette smokers problem by Downey (2008) is a surprisingly tricky synchroni-
sation problem. We study it here because it demonstrates the capabilities of guarded
steps. The problem is stated as follows. To smoke a cigarette, three ingredients are
required: tobacco, paper, and a match. There are three smokers, each having one
of the ingredients and requiring the other two. There is an agent that randomly
provides two of those. The difficulty lies in the requirement that only the smoker
may proceed whose missing ingredients are present.

Downey models availability of the ingredients with a semaphore for each in-
gredient. The agent randomly signals two of the three. The solution proposed by
Downey involves an additional mutex, three additional semaphores, three additional
threads called pushers, and three regular Boolean variables. The job of the pushers
is to record availability of their ingredient in their Boolean variable, and check
availability of other resources, waking the correct smoker when appropriate.

The solution to this problem, essentially deadlock-free waiting for two sema-
phores, requires a substantial amount of additional synchronisation, together with
non-trivial conditional statements. TOP allows a simple solution to this problem,
using guarded steps. Steps can be guarded with arbitrary expressions. The parallel
combinator can be used to watch two shared editors at the same time. Let match,
paper, and tobacco be references to Booleans. The smokers are defined as follows.

When the agent supplies two of the ingredients by setting the respective shares
to True, only the step of the smoker that waits for those becomes enabled.

4.3. Conclusion 51

let continue = λ〈x,y〉 . if x ∧ y then smoke else in
let tobaccoSmoker = (� match Z �paper) B continue in
let paperSmoker = (� tobacco Z �match) B continue in
let matchSmoker = (� tobacco Z �paper) B continue in
tobaccoSmoker Z paperSmoker Z matchSmoker

4.2.7 Tasks are predictable

Let t1 and t2 be tasks. The parallel combination t1 Z t2 stands for two in-
dependent tasks carried out at the same time. This operator introduces
interleaving concurrency. For the system it does not matter if the tasks are
executed by two different people, or by one person who switches between
the tasks. The inputs sent to the component tasks are interleaved into a
serial stream, which is sent to the parallel combinator. We assume that such
a serialisation is always possible. The tasks are truly independent of each
other, if all interleavings are possible. The environment prefixes events to t1
and t2 respectively by F (first) and S (second). This unambiguously renames
the inputs, removing any source of nondeterminism.

With concurrency comes the need for synchronisation, in situations
where only some but not all interleavings are possible. The basic method for
synchronisation in TOP is built into the step combinator. The task tB e can
only continue execution when two conditions are met: Task t must have a
value v, and e v must not evaluate to . Programmers can encode arbitrary
conditions in e v, which are evaluated atomically between interaction steps.
This allows a variety of synchronisation problems to be solved in an intuitive
and straight-forward manner.

C. A. R. Hoare (1985) states that nondeterminism is only ever useful for
specifying systems, never for implementing them. TOP is meant solely for
implementation and does not have any form of nondeterminism.

4.3 Conclusion

Collaboration in the real world consists of three aspects: communication,
concurrency, and synchronisation. These aspects are reflected in TOP on a
high level of abstraction, hiding the details of communication. For example,
the cigarette smokers communicate with each other, but the programs do
not explicitly mention sending or receiving events.

By focusing on collaboration instead of communication, TOP leads to
directly executable specifications closer to real-world workflows which, at

52 Chapter 4. An example-based introduction to TOP

the same time, can be used to generate multi-user applications to support
such workflows.

All abilities described in the previous section are captured by the three
building blocks of tasks: editors, composition, and shared data. The editors
facilitate interaction and are the observable part of tasks. The combinators
are at the heart of modelling collaboration. They describe what needs to be
done, in which order. Finally, the shared data system facilitates communi-
cation between tasks. These three building blocks will be formalised in the
next chapter.

53

Chapter 5

TopHat

TOP implementations have been around for more than a decade, in the forms
of iTasks and mTasks. These languages were developed with practical applicability
in mind, and their semantics have only been given in the form of a reference
implementation. TOP has been applied in projects with the Dutch coast guard, tax
office, and navy. In those domains, it is vital to work with reliable software. The
preferred way to verify that software works as expected, is by using formal methods.

Formal methods are mathematical techniques for verifying that applications
are correct. However, to apply these techniques, we require a formal semantics
for TOP. Currently, no TOP implementation has been formalised. This chapter
decomposes the rich TOP features into elementary language elements, which makes
them suitable for formal treatment. The simply typed lambda-calculus, extended
with pairs, lists and references, is used as a base language. On top of this language,
TopHat (T̂OP) is formalised, a language for modular interactive workflows. TopHat
is described by means of a layered semantics. These layers consist of multiple big-
step evaluations of expressions, and two labelled transition systems that handle user
inputs. With T̂OP, the foundation is laid for formal reasoning over TOP languages
and programs. On top of that, having a formal semantics allows us to better compare
T̂OP with other languages that model and coordinate collaboration. T̂OP has been
implemented in Haskell, and the task layer on top of the iTasks framework. By
developing a formal semantics, and implementing the semantics, we demonstrate
that it is indeed feasible to develop a usable, formal TOP language. Having a TOP
language with a formal semantics matters because formal program verification is
important for mission-critical software, especially for systems with concurrency.

5.1 Introduction

This chapter presents TopHat (T̂OP), a Task-oriented Programming (TOP)
language with a formal semantics. T̂OP is based on the TOP constructs
presented in Chapter 4. It consists of a task language that is embedded

54 Chapter 5. TopHat

in a simply typed lambda calculus. First, the language constructs are pre-
sented, followed by some illustrative examples. Then the formal semantics
is presented. To verify our approach, we prove several properties for these
semantics, and we present a practical implementation. With this chapter,
we lay the ground work for the application of formal methods to reason
about TOP software. In Chapter 6, we will use the formal semantics of T̂OP

to develop a symbolic execution semantics.

5.2 Language

In this section, we present the constructs of T̂OP, our modular interactive
workflow language. We define the host and task language, the types, and
the static semantics. Then we describe the workings of each construct using
examples. These constructs are formalised in Section 5.4.

5.2.1 Expressions

The host language is a simply typed λ-calculus, extended with some basic
types and ML-style references. We use references to represent shared data
sources. The simply typed λ-calculus does not support recursion. The gram-
mar in Fig. 5.1 defines the syntax of the host language. It has abstractions,
applications, variables, and constants for booleans, integers and strings. The
symbol ? stands for binary operators. For the result of parallel tasks we
need pairs. Conditionals come in handy for defining guards. References will
be used to implement shared editors. Our treatment of references closely
follows the one by Pierce (2002). Creating a reference using the keyword ref
yields a location l. x denotes program variables, l denotes store locations.
Locations are not intended to be directly manipulated by the programmer.
The symbols ! and := stand for dereferencing and assignment. The unit
value is used as the result of assignments.

Notation We use double quotation marks to denote strings. Integers are
denoted by their numerical representation, and booleans are written True
and False. We freely make use of the logic operators ¬, ∧, and ∨, arithmetic
operators +, −, ×, /, and the string append operator ++. Furthermore, we
use standard comparison operations <, ≤, ≡, ., ≥, and >. The symbol
? stands for any of those. The notation e1; e2 is an abbreviation for (λx :
Unit . e2) e1, where x is a fresh variable. The notation let x : τ = e1 in e2 is an
abbreviation for (λx : τ. e2) e1.

5.2. Language 55

Expressions

e ::= λx : τ. e | e1 e2 | x – abstraction, application, variable

| c | 〈〉 | u e1 | e1 o e2 – constant, unit, unary, binary operation

| if e1 then e2 else e3 – conditional

| 〈e1, e2〉 | fst e | snd e – pair, projections

| []β | e1 :: e2 – nil, cons

| head e | tail e – first element, list tail

| ref e | !e | e1 := e2 | l – references, location

| p – pretask

Constants

c ::= B | I | S – boolean, integer, string

Unary Operations

u ::= ¬ | − | len | uniq – not, negate, length, unique

Binary Operations

o ::= < | ≤ | ≡ | . | ≥ | > – equational

| + | − | × | / – numerical

| ∧ | ∨ – boolean

| ++ | ∈ – append, element of

FIGURE 5.1: Language grammar

56 Chapter 5. TopHat

Pretasks

p ::= � e | � β | � e – valued editor, unvalued editor, shared editor

| e1 I e2 | e1 B e2 – internal step, external step

| | e1 Z e2 – fail, parallel composition

| e1 � e2 | e1 ♦ e2 – internal choice, external choice

FIGURE 5.2: Task grammar

Types

τ ::= τ1 → τ2 | β | Ref τ | Task τ – function, basic, reference, task

Basic types

β ::= τ1 × τ2 | List β | Unit – product, list, unit

| Bool | Int | String – boolean, integer, string

FIGURE 5.3: Type grammar

Pretasks The grammar in Fig. 5.2 specifies the syntactic category of pre-
tasks. Pretasks are tasks that contain unevaluated subexpressions. Each
pretask will be discussed in more detail in the following subsections. We
use open symbols (�,�,B, ♦) for tasks that require user input, and closed
symbols (�, I, �) for tasks that can be evaluated without user input.

Typing Fig. 5.3 shows the grammar of types used by T̂OP. It has functions,
pairs, basic types, unit, references, and tasks.

The typing rules for expressions are given in Fig. 5.4. Most typing rules
lift the type of their subexpressions into the Task-type. The typing rules for
steps make sure the continuations e2 are functions that accept a well-typed
value from the left-hand side (T-THEN, T-NEXT). References, and therefore
shared editors, can only be of a basic type so they do not introduce implicit
recursion (T-UPDATE).

5.2.2 Editors

Programs in T̂OP model interactive workflows. Interaction means commu-
nication with end users. End users should be able to enter information into
the system, change it, clear it, reenter it, and so on. To do this, we introduce
the concept of editors. Editors are typed containers that either hold a value
or are empty. Editors that have a value can be changed. Empty editors can
be filled.

5.2. Language 57

Γ, Σ ` e : τ

T-CONSTBOOL
c ∈ B

Γ, Σ ` c : Bool

T-CONSTINT
c ∈ I

Γ, Σ ` c : Int

T-CONSTSTRING
c ∈ S

Γ, Σ ` c : String

T-VAR
x : τ ∈ Γ

Γ, Σ ` x : τ

T-UNIT

Γ, Σ ` 〈〉 : Unit

T-LOC
Σ(l) = β

Γ, Σ ` l : Ref β

T-PAIR
Γ, Σ ` e1 : τ1 Γ, Σ ` e2 : τ2

Γ, Σ ` 〈e1, e2〉 : τ1 × τ2

T-FIRST
Γ, Σ ` e : τ1 × τ2

Γ, Σ ` fst e : τ1

T-SECOND
Γ, Σ ` e : τ1 × τ2

Γ, Σ ` snd e : τ2

T-LISTEMPTY

Γ, Σ ` []β : List β

T-LISTCONS
Γ, Σ ` e1 : β

Γ, Σ ` e2 : List β

Γ, Σ ` e1 :: e2 : List β

T-LISTHEAD
Γ, Σ ` e : List β

Γ, Σ ` head e : β

T-LISTTAIL
Γ, Σ ` e : List β

Γ, Σ ` tail e : List β

T-ABS
Γ[x : τ1], Σ ` e : τ2

Γ, Σ ` λx : τ1.e : τ1 → τ2

T-IF
Γ, Σ ` e1 : Bool

Γ, Σ ` e2 : τ

Γ, Σ ` e3 : τ

Γ, Σ ` if e1 then e2 else e3 : τ

T-APP
Γ, Σ ` e1 : τ1 → τ2

Γ, Σ ` e2 : τ1
Γ, Σ ` e1e2 : τ2

T-REF
Γ, Σ ` e : β

Γ, Σ ` ref e : Ref β

T-DEREF
Γ, Σ ` e : Ref β

Γ, Σ ` !e : β

T-ASSIGN
Γ, Σ ` e1 : Ref β

Γ, Σ ` e2 : β

Γ, Σ ` e1 := e2 : Unit

T-FAIL

Γ, Σ ` : Task τ

T-EDIT
Γ, Σ ` e : β

Γ, Σ ` � e : Task β

T-ENTER

Γ, Σ ` � β : Task β

T-UPDATE
Γ, Σ ` e : Ref β

Γ, Σ ` � e : Task β

T-OR
Γ, Σ ` e1 : Task τ

Γ, Σ ` e2 : Task τ
Γ, Σ ` e1 � e2 : Task τ

T-THEN
Γ, Σ ` e1 : Task τ1

Γ, Σ ` e2 : τ1 → Task τ2
Γ, Σ ` e1 I e2 : Task τ2

T-NEXT
Γ, Σ ` e1 : Task τ1

Γ, Σ ` e2 : τ1 → Task τ2
Γ, Σ ` e1 B e2 : Task τ2

T-AND
Γ, Σ ` e1 : Task τ1

Γ, Σ ` e2 : Task τ2
Γ, Σ ` e1 Z e2 : Task (τ1 × τ2)

T-XOR
Γ, Σ ` e1 : Task τ

Γ, Σ ` e2 : Task τ
Γ, Σ ` e1 ♦ e2 : Task τ

FIGURE 5.4: Typing rules

58 Chapter 5. TopHat

Editors are used for various forms of input and output, for example
widgets in a GUI, form fields on a webpage, sensors, or network connections.
Consider an editor for a person’s age on a web page. Users can change
the value until they are satisfied with it. Editors are meant to capture this
constantly changing nature of user input. The user interface of an editor
depends on its type. This could be an input field for strings, a toggle switch
for booleans, or even a map with a pin for locations.

Valued and unvalued editors (� e,� β) Editors that hold an expression
e : β have type Task β. Empty editors are annotated with a type to ensure
type safety and type preservation during evaluation.

Shared editors (� e) Shared editors watch references, lifting their value
into the task domain. If e is a reference Ref β, then � e is of type Task β.

Changes to a shared editor are immediately visible to all shared editors
watching the same reference. Imagine two users, Marco and Christopher,
both watching shared editors of the same coordinates. The editors are
visualised as a pin on a map. When Marco moves his pin, he updates the
value of the shared editor, thereby changing the value of the reference. This
change is immediately reflected on Christopher’s screen: The pin changes
its position on his map. This way Marco and Christopher can work together
to edit the same information.

Two other important use cases for shared editors are sensors and time.
Sensors can be represented as external entities that periodically update a
shared editor with their current sensor value. Similarly, the current time
can be stored in a shared editor (�time) that is periodically updated by a
clock. The actual sensor and the clock are not modelled in T̂OP. We assume
that they exist as external users that send update events to the system. This
allows programmers to write tasks that react to sensor values or timeouts.

5.2.3 Steps

Editors represent atomic units of work. In this section we look at ways
to compose smaller tasks into bigger ones. Composing tasks can be done
in two ways, sequential and parallel. Parallel composition comes in two
variants: combining two tasks (and-parallel) and choosing between two
tasks (or-parallel). We study sequential composition first, and after that
combining and choosing.

Internal and external step (t I e, tB e) Sequential composition has a task t
on the left and a continuation e on the right. External steps (B) are triggered

5.2. Language 59

by the user, while internal steps (I) are taken automatically. The accompa-
nying typing rules are T-THEN and T-NEXT. According to these rules, the
left-hand side is a task t : Task τ1, and the right hand side e : τ1 → Task τ2 is
a function that, given the task value of t, calculates the task with which to
continue.

Steps are guarded, which means that the step combinators can only
proceed when the following conditions are met. The left-hand side must
have a value, only then can the right hand side calculate the successor task.
The successor task must not be , introduced below. This is enforced on
the semantic level, as described in the next section. The internal step can
proceed immediately when these conditions are met. The external step must
additionally receive a continue event C.

Example 5.2.1 (Conditional stepping)
Consider the following:

�Int I λn. if n ≡ 42 then �"Good" else �"Bad"

Initially, the step is guarded because the editor does not have a value. When a
user enters an integer, the program continues immediately with either �"Good" or
�"Bad", depending on the input.

Fail () Fail is a task that never has a value and never accepts input. The
typing rule T-FAIL states that it has type Task τ for any type τ. Programmers
can use to tell steps that no sensible successor task can proceed.

Example 5.2.2 (Guarded stepping)
Consider this slight variation on Example 5.2.1:

�Int I λn. if n ≡ 42 then �"Good" else

The user is asked to enter an integer. As long as the right hand side of I evaluates
to , the step cannot proceed, and the user can keep editing the integer. As soon
as the value of the left-hand side is 42, the right hand side evaluates to something
other than , and the step proceeds to �"Good".

Example 5.2.3 (Waiting)
With the language constructs seen so far it is possible to create a task that waits for
a specified amount of time. To do this, we make use of a shared editor holding the
current time (see Section 5.2.2), and a guarded internal step.

60 Chapter 5. TopHat

let wait : Int→ Task Unit = λamount : Int.

�time I λstart : Int.

�time I λnow : Int.

if now > start + amount then �〈〉 else

The first step is immediately taken, resulting in start to be the time at the moment
wait is executed. The second step is guarded until the current time is greater to the
start time plus the required amount.

5.2.4 Parallel

A common pattern in workflow design is splitting up work into multiple
tasks that can be executed simultaneously. In T̂OP, all parallel branches can
progress independently, driven by input events. This requires inputs to be
tagged in order to reach the intended task.

There are two ways to proceed after a parallel composition. One way is
to wait for all tasks to produce results and combine those, the other to pick
the first available result. Both ways introduce explicit forks and implicit
joins in T̂OP.

Combination (e1 Z e2) A combination of two tasks is a parallel and. It has
a value only if both branches have a value. This is reflected in the typing
rule T-AND, It shows that if the first task has type τ1, and the second has
type τ2, their combination has the pair type τ1 × τ2.

Example 5.2.4 (Combining)
The task

�Int Z �" Batman" I λ〈n, s〉 . �(replicate n "Na" ++ s)

can only step when both editors have values. When it steps, the continuation uses
the pair to calculate the result.

Internal and external choice (e1 � e2, e1 ♦ e2) Internal choice (�) is a paral-
lel or. It picks the leftmost branch that has a value. Its typing rule T-OR

states that both branches must have the same type Task τ. For example,
� Int �� 37 normalises to � 37, because � Int doesn’t have a value. Users can
work on both branches of an internal choice simultaneously.

External choice (♦) is different in this regard. An external choice requires
users to pick a branch before continuing with it. This means users cannot
work on the branches of an external choice before picking one.

5.3. Example 61

Example 5.2.5 (Delay)
We illustrate the use of internal and external choice by means of an example that
asks a user to proceed with a given task or to cancel. If the user does not make a
choice within a given time frame, the program proceeds automatically. The example
makes use of the task wait from Example 5.2.3.

let cancel : Task Unit = �〈〉 in
let delay : Int→ Task Unit→ Task Unit = λn. λproceed.

(proceed ♦ cancel) � (wait n I λu : Unit. proceed)

Note that delay is higher-order. It is a task that takes another task as parameter.

5.2.5 Annotations

Tasks can be annotated with additional information. The system can use
this information in various ways. Possible use cases are labels for the user
interface, resource consumption information for static resource analysis, or
messages for automatic end-user feedback. Annotations are not covered in
this chapter. Our Haskell implementation of T̂OP supports annotating tasks
with user IDs, so that individual tasks in a large workflow can be assigned
to different users. These annotations are used to filter the user interfaces for
each user so that they can only see their part of the workflow.

5.3 Example

In this section we develop an example program to demonstrate the capabili-
ties of T̂OP. The example is a small flight booking system. It demonstrates
communication on all three levels: with the environment, across control
flow, and alongside it. Also, it shows synchronisation and input validation.

The requirements of the application are as follows. 1. A user has to
enter a list of passengers for which to book tickets. 2. At least one of these
passengers has to be an adult. 3. After a valid list of passengers has been
entered, the user has to pick seats. 4. Only free seats may be picked. 5. Every
passenger must have exactly one seat. 6. Multiple users should be able to
book tickets at the same time.

For this example we assume that the host language has four functions
over lists: all, any, intersect, and di�erence. The functions all and any check if
all or any elements in a list satisfy a given predicate. The functions intersect
and di�erence compute the set-intersection and set-difference of two lists.

62 Chapter 5. TopHat

FIGURE 5.5: Running web application of the flight booking example using a trans-
lation to iTasks.

We also make use of string equality (≡), dereferencing (!), reference assign-
ment (:=), and expression sequencing (;). For brevity, we omit the type
annotations of variable bindings.

Example 5.3.1 (Flight booking)
We start off by defining some type aliases. A passenger is a pair with name and age.
A seat is a pair with a row number and a seat letter.

type Passenger = String × Int

type Seat = Int × String

Choosing seats requires reading and updating shared information. The list of
free seats is stored in a reference.

let freeSeats = ref [〈1,"A"〉 , 〈1,"B"〉 , 〈1,"C"〉 , ...]

Now we develop our workflow in a top-down manner. Our flight booking
starts with an interactive task �(List Passenger), where users can enter a list of
passengers. A task � τ is an empty editor that asks for a value of the given type τ.
Passengers are valid if their name is not empty and their age is at least 0. Lists of
passengers are valid if each passenger is valid, and at least one of the passengers
is an adult. When the user has entered a valid list of passengers, the step after B
becomes enabled, and the user can proceed to picking seats. In case of an invalid list
of passengers, the step is guarded by the failing task .

let valid = λp. ¬ (fst p ≡ "") ∧ snd p ≥ 0 in
let adult = λp. snd p ≥ 18 in
let allValid = λps. all valid ps ∧ any adult ps in
let bookFlight = �(List Passenger) B λps.

if allValid ps then chooseSeats ps else

5.4. Semantics 63

A selection of seats is correct if every entered seat is free.

let correct = λss. intersect ss !freeSeats ≡ ss in
let chooseSeats = λps. �(List Seat) B λss.

if correct ss ∧ length ps ≡ length ss

then confirmBooking ps ss else

The function confirmBooking removes the selected seats from the shared list of
free seats, and displays the end result using an editor, denoted by �.

let confirmBooking = λps. λss.

freeSeats := di�erence !freeSeats ss; �〈ps, ss〉

The main task starts three bookFlight tasks, which could be performed by three
different users in parallel.

bookFlight Z bookFlight Z bookFlight

A screenshot of the running application is shown in Fig. 5.5.
All instances of the bookFlight task have access to the shared list of free seats.

Rewriting the example in a language without side effects would not only be cum-
bersome, obfuscating the code with explicit threading of state, but it would be
impossible to model the parallel execution of three bookFlight tasks. It is not known
upfront which task will finish first, and thus it is not possible to thread the free seat
list between the parallel tasks.

5.4 Semantics

In this section we formalise the semantics of the language constructs de-
scribed in Section 5.2. We organise this by following the structure of the lan-
guage. Firstly, the task language is embedded in a simply typed λ-calculus.
This requires a specification of the evaluation of terms in the host language,
and how it handles the task language. Secondly, there are two ways to drive
evaluation of task expressions, internally by the system itself, and externally
by the user. This is done in two additional semantics, one for the internal
normalisation of tasks, and another for the interaction with the end user.

The three main layers of semantics are thus evaluation, normalisation,
and interaction. The semantics, together with observations, will be discussed
in the following subsections. Fig. 5.6 shows the relation between all seman-
tics arrows. It also shows that there are two helper semantics, handle and

64 Chapter 5. TopHat

Interact (=⇒)

Handle (−→)

Normalise (⇓)

Stride (7→)

Evaluate (↓)

uses

uses
uses

uses

uses
uses

FIGURE 5.6: Semantic functions defined in this report and their relation.

Values

v ::= λx : τ. e | 〈v1, v2〉 | c | 〈〉 – abstraction, pair, constant, unit

| []β | v1 :: v2 | l | t - nil, cons, location, task

Tasks

t ::= � v | � β | � l – valued editor, unvalued editor, shared editor

| t1 I e2 | t1 B e2 – internal step, external step

| | t1 Z t2 – fail, parallel combination

| t1 � t2 | e1 ♦ e2 – internal choice, external choice

FIGURE 5.7: Value grammar

stride. We use the convention that downward arrows are big-step semantics,
and rightward arrows are small-step semantics. One of our explicit goals is
to keep the semantics for evaluation and normalisation separate, to not mix
general purpose programming notions with workflow specific semantics.
This is achieved by letting tasks be values in the host language.

5.4.1 Evaluating expressions

The host language evaluates expressions using a big-step semantics. To ease
reasoning about references, we choose a call-by-value evaluation strategy.

Fig. 5.7 shows values that are the result of the evaluation semantics.
Tasks are values, and the operands of task constructors are evaluated eagerly.
Exceptions to this are steps and external choice, where some or all of the
operands are not evaluated.

The rules to evaluate expressions e are listed in Fig. 5.8. Most rules do
not differ from standard rules for evaluating expressions in the simply
typed lambda calculus (Pierce, 2002), except for the task constructs. The
evaluation rules for tasks can be deduced from the value grammar. Most
task constructors are strict in their arguments. Only steps keep their right
hand side unevaluated to delay side effects till the moment the step is taken.
The same holds for both branches of the external choice.

5.4. Semantics 65

e, σ ↓ v, σ′

E-VALUE

v, σ ↓ v, σ

E-PAIR
e1, σ ↓ v1, σ′ e2, σ′ ↓ v2, σ′′

〈e1, e2〉, σ ↓ 〈v1, v2〉, σ′′

E-FIRST
e, σ ↓ 〈v1, v2〉, σ′

fst e, σ ↓ v1, σ′

E-SECOND
e, σ ↓ 〈v1, v2〉, σ′

snd e, σ ↓ v2, σ′

E-HEAD
e, σ ↓ v1 :: v2, σ′

head e, σ ↓ v1, σ′

E-CONS
e1, σ ↓ v1, σ′ e2, σ′ ↓ v2, σ′′

e1 :: e2, σ ↓ v1 :: v2, σ′′

E-TAIL
e, σ ↓ v1 :: v2, σ′

tail e, σ ↓ v2, σ′

E-APP
e1, σ ↓ λx : τ.e′1, σ′

e2, σ′ ↓ v2, σ′′

e′1[x 7→ v2], σ′′ ↓ v1, σ′′′

e1e2, σ ↓ v1, σ′′′

E-IFTRUE
e1, σ ↓ True, σ′

e2, σ′ ↓ v2, σ′′

if e1 then e2 else e3, σ ↓ v2, σ′′

E-IFFALSE
e1, σ ↓ False, σ′

e3, σ′ ↓ v3, σ′′

if e1 then e2 else e3, σ ↓ v3, σ′′

E-REF
e, σ ↓ v, σ′ l < Dom(σ′)

ref e, σ ↓ l, σ′[l 7→ v]

E-DEREF
e, σ ↓ l, σ′

!e, σ ↓ σ′(l), σ′

E-ASSIGN
e1, σ ↓ l, σ′ e2, σ′ ↓ v2, σ′′

e1 := e2, σ ↓ 〈〉, σ′′[l 7→ v2]

E-EDIT
e, σ ↓ v, σ′

� e, σ ↓ � v, σ′

E-UPDATE
e, σ ↓ l, σ′

� e, σ ↓ � l, σ′

E-THEN
e1, σ ↓ t1, σ′

e1 I e2, σ ↓ t1 I e2, σ′

E-NEXT
e1, σ ↓ t1, σ′

e1 B e2, σ ↓ t1 B e2, σ′

E-AND
e1, σ ↓ t1, σ′ e2, σ′ ↓ t2, σ′′

e1 Z e2, σ ↓ t1 Z t2, σ′′

E-OR
e1, σ ↓ t1, σ′ e2, σ′ ↓ t2, σ′′

e1 � e2, σ ↓ t1 � t2, σ′′

FIGURE 5.8: Evaluation semantics for expressions

66 Chapter 5. TopHat

V : Task× State ⇀ Value
V (� v, σ) = v
V (� β, σ) = ⊥
V (� l, σ) = σ(l)
V (, σ) = ⊥
V (t1 I e2, σ) = ⊥
V (t1 B e2, σ) = ⊥

V (t1 Z t2, σ) =

{
〈v1, v2〉 when V (t1, σ) = v1 ∧ V (t2, σ) = v2
⊥ otherwise

V (t1 � t2, σ) =


v1 when V (t1, σ) = v1
v2 when V (t1, σ) = ⊥∧ V (t2, σ) = v2
⊥ otherwise

V (t1 ♦ t2, σ) = ⊥
FIGURE 5.9: Values observation function.

5.4.2 Task observations

The normalisation (⇓) and interaction (=⇒) semantics make use of obser-
vations on tasks. Observations are semantic functions on the syntax tree of
tasks. There are four semantic functions: V for the current task value, F to
determine if a task fails, I for the currently accepted input events, and a
function for generating user interfaces. The semantics make use of V and
F , while I is used for proving safety. The function for user interfaces is not
used by the semantics, but by our implementation. It is only described in
passing here.

Observable values (V) Task values are used by steps to calculate the
successor task. Filled editors are tasks that contain values, as are shared
editors. Unvalued editors do not contain values, neither does the fail task.
These facts propagate through all other task constructors. The function V
associates a value v to task t where possible. Its definition is given in Fig. 5.9.
We use a half arrow (⇀) to indicate that this function is partial, and ⊥ to
indicate when the function is undefined.

Internal and external steps do not have an observable value, because
calculating the value would require evaluation of the continuation. Parallel
composition only has a value when both branches have values, in which
case these values are paired. Internal choice has a value when one of the
branches has a value. When both branches have a value, it takes the value
of the left branch. External choice does not have a value because it waits for
user input.

5.4. Semantics 67

F : Task× State→ Bool
F (� v, σ) = False
F (� β, σ) = False
F (� l, σ) = False
F (, σ) = True
F (t1 I e2, σ) = F (t1, σ)
F (t1 B e2, σ) = F (t1, σ)
F (t1 Z t2, σ) = F (t1, σ) ∧ F (t2, σ)
F (t1 � t2, σ) = F (t1, σ) ∧ F (t2, σ)
F (e1 ♦ e2, σ) = F (t1, σ′1) ∧ F (t2, σ′2)

where e1, σ ⇓ t1, σ′1 and e2, σ ⇓ t2, σ′2

FIGURE 5.10: Failing observation function.

Failing (F) stands for an impossible task. Combinations of tasks can
also be impossible. Take for example the parallel composition of two fails
(Z). This expression is equivalent to , because it cannot handle input
and cannot be further normalised. A task is considered impossible if there is
no interaction possible, and there is no observable task value. This intuition
is formalised by the function F in Fig. 5.10. It determines whether a task is
impossible. Such tasks are called failing.

Steps whose left-hand sides are failing can never proceed because of the
lack of an observable value. Therefore, they are itself failing. The parallel
combination of two tasks is failing if they are both failing. If only one of
them fails, there is still interaction possible with the other task. The internal
choice of two failing tasks is failing. External choices let the user pick a
side and only then evaluate the corresponding subexpression. To determine
if an external choice is failing, it needs to peek into the future to check if
both subexpressions are failing. The choice case relies on the normalisation
semantics (⇓) defined in the next section.

User interface T̂OP is designed such that a user interface can be generated
from a task’s syntax tree. A possible graphical user interface is shown in
Fig. 5.5, where tasks are rendered as HTML pages. Editors are rendered as
input fields, external choices are represented by two buttons, and parallel
tasks are rendered side by side. Steps only show the interface of their left-
hand side. In case of an external step they are accompanied by a button.
When the guard condition of a step is not fulfilled, the button is disabled.

68 Chapter 5. TopHat

e, σ ⇓ t, σ′

N-DONE
e, σ ↓ t, σ′

t, σ′ 7→ t′, σ′′

σ′ = σ′′ ∧ t = t′
e, σ ⇓ t, σ′

N-REPEAT
e, σ ↓ t, σ′

t, σ′ 7→ t′, σ′′

σ′ , σ′′ ∨ t , t′

t′, σ′′ ⇓ t′′, σ′′′

e, σ ⇓ t′′, σ′′′

FIGURE 5.11: Normalisation semantics

5.4.3 Normalising tasks

The normalisation semantics is responsible for reducing expressions of type
Task until they are ready to handle input. It is a big-step semantics, and
makes use of evaluation of the host language. We write e, σ ⇓ t, σ′ to
describe that an expression e in state σ normalises to task t in state σ′.

Normalisation rules are given in Fig. 5.11. Both rules ensure that expres-
sions are first evaluated by the host language (↓), and then by the stride
semantics (7→). These two actions are repeated until the resulting state and
task stabilise.

The striding semantics is responsible for reducing internal steps and
internal choices. A stride from task t in state σ to t′ in state σ′ is denoted by
t, σ 7→ t′, σ′. The rules for striding are given in Fig. 5.12. Tasks like editors,
fail and external choice are not further reduced. For external choice and
parallel there are congruence rules.

The split between striding and normalisation is due to mutable refer-
ences. Consider the following example, where σ = {l 7→ False}.

(� l I λx:Bool. if x then e else) Z (l := True; �〈〉)

S-AND reduces this expression in one step to

(� l I λx:Bool. if x then e else) Z (� 〈〉)

with σ′ = {l 7→ True}. This expression is not normalised, because the left
task can take a step. The issue here lies in the fact that the right task updates
l. The N-DONE and N-REPEAT rules ensure that striding is applied until
the state σ becomes stable and no further normalisation can take place.

5.4. Semantics 69

t, σ 7→ t′, σ′

S-EDIT

� v, σ 7→ � v, σ

S-THENSTAY
t1, σ 7→ t1

′, σ′ V (t1
′, σ′) = ⊥

t1 I e2, σ 7→ t1
′ I e2, σ′

S-FILL

� β, σ 7→ � β, σ

S-THENFAIL
t1, σ 7→ t1

′, σ′ V (t1
′, σ′) = v1

e2 v1, σ′ ↓ t2, σ′′ F (t2, σ′′)

t1 I e2, σ 7→ t1
′ I e2, σ′

S-UPDATE

� l, σ 7→ � l, σ

S-THENCONT
t1, σ 7→ t1

′, σ′ V (t1
′, σ′) = v1

e2 v1, σ′ ↓ t2, σ′′ ¬F (t2, σ′′)

t1 I e2, σ 7→ t2, σ′′

S-FAIL

 , σ 7→ , σ

S-ORLEFT
t1, σ 7→ t1

′, σ′ V (t1
′, σ′) = v1

t1 � t2, σ 7→ t1
′, σ′

S-XOR

e1 ♦ e2, σ 7→ e1 ♦ e2, σ

S-ORRIGHT
t1, σ 7→ t1

′, σ′ V (t1
′, σ′) = ⊥

t2, σ′ 7→ t2
′, σ′′ V (t2

′, σ′′) = v2

t1 � t2, σ 7→ t2
′, σ′′

S-ORNONE
t1, σ 7→ t1

′, σ′ V (t1
′, σ′) = ⊥

t2, σ′ 7→ t2
′, σ′′ V (t2

′, σ′′) = ⊥
t1 � t2, σ 7→ t1

′ � t2
′, σ′′

S-NEXT
t1, σ 7→ t1

′, σ′

t1 B e2, σ 7→ t1
′ B e2, σ′

S-AND
t1, σ 7→ t1

′, σ′ t2, σ′ 7→ t2
′, σ′′

t1 Z t2, σ 7→ t1
′ Z t2

′, σ′′

FIGURE 5.12: Striding semantics

70 Chapter 5. TopHat

t, σ
i
=⇒ t′, σ′

I-HANDLE

t, σ
i−→ t′, σ′ t′, σ′ ⇓ t′′, σ′′

t, σ
i
=⇒ t′′, σ′′

FIGURE 5.13: Interaction semantics

Principles of stepping Considering the expression t1 I e, stepping away
from task t1 can only be performed when t1 has a value: V (t1) = v1. Only
then can a new task t2 be calculated from the application of the result value
v1 to the expression e. On top of that, t2 must not be failing: ¬F (t2). These
principles lead to the stepping rules in Fig. 5.12. S-THENSTAY does nothing,
because the left side does not have a value. S-THENFAIL covers the case that
the left side has a value but the calculated successor task is failing. This rule
uses the semantics of the host language to evaluate the application e2 v1.
When all required conditions are fulfilled, S-THENCONT allows stepping to
the successor task.

Principles of choosing Choosing between two tasks t1 and t2 can only be
done when at least one of them has a value: V (t1) = v1 ∨V (t2) = v2. When
both have a value, the left task is chosen. When none has a value, none can
be chosen. These principles lead to the rules S-ORLEFT, S-ORRIGHT, and
S-ORNONE, which encode that the choice operator picks the leftmost task
that has a value.

5.4.4 Handling user inputs

The handling semantics is the outermost layer of the stack of semantics. It
is responsible for performing external steps and choices, and for changing
the values of editors. The rules of the interaction semantics are given in
Fig. 5.13. The semantics is only applicable to normalised tasks t. Sending

an input event i to a task t, denoted as t, σ
i
=⇒ t′, σ′, first handles the event

and then prepares the resulting task for the next input by normalising it.
Inputs i are formed according to the grammar in Fig. 5.14. F and S in an

input encode the path to the task at which the input is targeted. There is a
function I which calculates the possible input events a given task expects.
It takes a normalised task and a state and returns a set of inputs that can be
handled. The definition of this function is listed in Fig. 5.15.

Handling input is done by the handling semantics shown in Fig. 5.16. It
is a small step semantics with labelled transitions. It takes a task t in a state
σ and an input i, and yields a new task t′ in a new state σ′.

5.4. Semantics 71

Inputs

i ::= a | F i | S i – action, pass to first, pass to second

Actions

a ::= c | C | L | R – constant, continue, go left, go right

FIGURE 5.14: Input grammar

I : Task× State→ P(Input)
I (� v, σ) = {c | c : β} where � v : Task β
I (� β, σ) = {c | c : β}
I (� l, σ) = {c | c : β} where � l : Task β
I (, σ) = ∅
I (t1 I e2, σ) = I (t1, σ)
I (t1 B e2, σ) = I (t1, σ)

∪{C | V (t1, σ) = v1 ∧ e2 v1, σ ⇓ t2, σ′ ∧ ¬F (t2, σ′)}
I (t1 Z t2, σ) = {F i | i ∈ I (t1, σ)} ∪ {S i | i ∈ I (t2, σ)}
I (t1 � t2, σ) = {F i | i ∈ I (t1, σ)} ∪ {S i | i ∈ I (t2, σ)}
I (e1 ♦ e2, σ) = {L | e1, σ ⇓ t1, σ′ ∧ ¬F (t1, σ′)}∪

{R | e2, σ ⇓ t2, σ′ ∧ ¬F (t2, σ′)}
FIGURE 5.15: Inputs

72 Chapter 5. TopHat

t, σ
i−→ t′, σ′

Editing

H-CHANGE
v, v′ : β

� v, σ
v′−→ � v′, σ

H-FILL
v : β

� β, σ
v−→ � v, σ

H-UPDATE
σ(l), v : β

� l, σ
v−→ � l, σ[l 7→ v]

Continuing

H-NEXT
e2 v1, σ ⇓ t2, σ′

V (t1, σ) = v1 ∧ ¬F (t2, σ′)

t1 B e2, σ
C−→ t2, σ′

H-PICKLEFT
e1, σ ⇓ t1, σ′ ¬F (t1, σ′)

e1 ♦ e2, σ
L−→ t1, σ′

H-PICKRIGHT
e2, σ ⇓ t2, σ′ ¬F (t2, σ′)

e1 ♦ e2, σ
R−→ t2, σ′

Passing

H-PASSTHEN

t1, σ
i−→ t′1, σ′

t1 I e2, σ
i−→ t′1 I e2, σ′

H-PASSNEXT

t1, σ
i−→ t′1, σ′

t1 B e2, σ
i−→ t′1 B e2, σ′

H-FIRSTAND

t1, σ
i−→ t1

′, σ′

t1 Z t2, σ
F i−→ t1

′ Z t2, σ′

H-SECONDAND

t2, σ
i−→ t2

′, σ′

t1 Z t2, σ
S i−→ t1 Z t2

′, σ′

H-FIRSTOR

t1, σ
i−→ t1

′, σ′

t1 � t2, σ
F i−→ t1

′ � t2, σ′

H-SECONDOR

t2, σ
i−→ t2

′, σ′

t1 � t2, σ
S i−→ t1 � t2

′, σ′

FIGURE 5.16: Handling semantics

5.5. Properties 73

The rules H-CHANGE,H-FILL,H-UPDATE describe how input events v
are used to change the value of editors. Editors only accept values of the
correct type.

H-NEXT handles the C(ontinue) action, that triggers an external step.
As with internal stepping, this is only possible if the left side has a value
and the continuation is not failing.

H-PICKLEFT, H-PICKRIGHT handle L and R inputs, that are used to pick
the left or right option of an external choice.

H-PASSTHEN, H-PASSNEXT pass all events other than the continue
event C to the left side.

H-FIRSTAND, H-SECONDAND, H-FIRSTOR, H-SECONDOR direct the
inputs F(irst) and S(econd) to the correct branch of parallel combinations.

5.4.5 Implementation

The semantics have been implemented in the Haskell programming lan-
guage (Marlow, 2010). We use data types as monads (Jaskelioff, Ghani, &
Hutton, 2011), data types à la carte (Swierstra, 2008), and monad transform-
ers for layered semantics (Peyton Jones, 2001). The source code can be found
on GitHub.1 A command-line interface is part of this implementation. It
prompts users to type input events, which are parsed and processed by the
interaction semantics.

Also, we constructed an implementation of T̂OP combinators on top
of iTasks, so that T̂OP specifications can be compiled to runnable applica-
tions. This shows that T̂OP is a subset of iTasks. The source code for this
implementation can also be found on GitHub.2

5.5 Properties

To show our semantics are reasonable, we show that our evaluation, normal-
isation and handling semantics is type preserving. We additionally prove
a progress theorem for our small-step handling semantics. We show that
our failing function F indeed only indicates expressions that cannot be
normalised and that allow no further interaction. Finally, we prove that the
function to compute all possible inputs I is sound and complete.

All proofs are rather straight forward induction proofs. While it would
certainly be possible to prove the theorems in this section by using a theorem

1https://github.com/timjs/tophat-haskell
2https://github.com/timjs/tophat-clean

https://github.com/timjs/tophat-haskell
https://github.com/timjs/tophat-clean

74 Chapter 5. TopHat

prover like Coq or Agda, this would be more involved than just doing the
proofs by hand.

5.5.1 Type preservation

We show that the following three preservation theorems hold, Where Γ, Σ `
σ means that for all l ∈ σ, it holds that Γ, Σ ` σ(l) : Σ(l).

Theorem 5.5.1 (Type preservation under evaluation)
For all expressions e and states σ such that Γ, Σ ` e : τ and Γ, Σ ` σ, if e, σ ↓
e′, σ′, then Γ, Σ ` e′ : τ and Γ, Σ ` σ′.

Theorem 5.5.2 (Type preservation under normalisation)
For all well typed expressions e and states σ such that Γ, Σ ` e : Task τ and
Γ, Σ ` σ, if e, σ ⇓ e′, σ′, then Γ, Σ ` e′ : Task τ and Γ, Σ ` σ′.

Theorem 5.5.3 (Type preservation under handling)
For all well typed expressions e, states σ and inputs i such that Γ, Σ ` e : Task τ

and Γ, Σ ` σ, if e, σ
i−→ e′, σ′, then Γ, Σ ` e′ : Task τ and Γ, Σ ` σ′.

All three Theorems are proven to be correct by induction over e. The full
proofs are listed in Appendix A. From Theorem 5.5.3 and Theorem 5.5.2 we
directly obtain that the driving semantics also preserves types.

5.5.2 Progress

A well-typed term of a task type is guaranteed to progress after normalisa-
tion, unless it is failing.

We define what we mean with progress in Theorem 5.5.4.

Theorem 5.5.4 (Progress under handling)
For all well typed expressions e and states σ, if e, σ ⇓ e′, σ′, then either F (e′, σ′)

or there exist e′′, σ′′, and i such that e′, σ′
i−→ e′′, σ′′.

Where a well typed expression e means that Γ, Σ ` e : τ for some type τ,
and a well typed state means that Γ, Σ ` σ.

If an expression e and state σ are well-typed, then after normalisation,
the pair e′, σ′ either fails, or there exists some input i that can be handled by
it under the handling semantics. To prove this Theorem, we need to show
that the failing function F behaves as expected.

Theorem 5.5.5 (Failing means no interaction possible)
For all expressions e and states σ such that Γ, Σ ` e : Task τ and Σ ` σ, and
e, σ ⇓ t, σ′, we have that F (t, σ′) = True, if and only if there is no input i such

that t, σ′
i−→ t′, σ′′ for some t′ and σ′′.

5.6. Related work 75

The Theorem above states that an expression e and state σ are failing,
if, after normalisation, there exists no input that can be handled by it. We
prove the theorem by induction on t. The full proof is listed in Appendix B.

We now have the ingredients to prove Theorem 5.5.4.

Proof: Given Γ, Σ ` e : Task τ and Σ ` σ and after normalisation e, σ ⇓
e′, σ′, we find ourselves in either one of the following situations:

There exists an i such that e′, σ′
i−→ e′′, σ′′.

There does not exist an i such that e′, σ′
i−→ e′′, σ′′. In this case, we know

that F (e′, σ′) must be true, by Theorem 5.5.5. �

5.5.3 Soundness and completeness of Inputs

To validate the function that calculates all possible inputs I , we want to
show that the set of possible inputs it produces is both sound and complete
with respect to the handling semantics. By sound we mean that all inputs in
the set of possible inputs can actually be handled by the handling semantics,
and by complete we mean that the set of possible inputs contains all inputs
that can be handled by the handling semantics. Theorem 5.5.6 expresses
exactly this property.

Theorem 5.5.6 (Inputs function is sound and complete)
For all expressions e, states σ, and inputs i such that Γ, Σ ` e : τ and Σ ` σ, we
have that i ∈ I (e, σ) if and only if there exists and expression e′ and state σ′ such

that e, σ
i−→ e′, σ′.

We prove the above theorem by induction over a derivation of Γ, Σ ` e :
Task τ. The proof is given in Appendix C.

5.6 Related work

The work presented in this chapter lies on the boundary of many areas of
study. People have looked at the problem of how to model and coordinate
collaboration from many different perspectives. The following subsections
give an overview of related work from the many different areas.

5.6.1 TOP implementations

iTasks As mentioned earlier, iTasks is an implementation of TOP. iTasks
has many features, and its basic combinators are versatile and powerful.
Simpler combinators are implemented by restricting the powerful ones. This

76 Chapter 5. TopHat

is useful for everyday programming, where having lots of functionality at
one’s fingertips is convenient and efficient. T̂OP on the other hand does not
include the many different variations of the step- and parallel combinators
of iTasks. To name two examples, the combinators (>>|) and (||-) are
variations of step and parallel that ignore the value of the left task.

The task layer of iTasks is embedded in the functional programming
language Clean Plasmeijer et al. (2002). iTasks uses the facilities in the host
language to support recursion and higher order task programs. Since T̂OP

uses the simply typed λ-calculus as a host language, it does not support
these features.

P. W. M. Koopman et al. (2008) and Plasmeijer et al. (2012) describe
two versions of the semantics of iTasks. Both give a different semantics
in the form of minimal implementations of a subset of the interface of
iTasks. These semantics do not make an explicit distinction between the
host language and task language and they do not provide an explicit formal
semantics. We describe the T̂OP semantics by giving semantic relations
and an implementation, which makes our system better suited for formal
reasoning (Winskel, 1993).

When comparing the features offered by T̂OP to iTasks, we see that the
task layer of both languages are very similar. One important distinction is
the fact that iTasks has a notion of time and task stability, which T̂OP does
not. Nevertheless, we expect that T̂OP can emulate the behaviour of the task
layer of iTasks, but we leave proving this as future work.

mTasks The mTasks framework (P. Koopman et al., 2018) is an implemen-
tation of TOP geared towards IOT devices. As in T̂OP, its basic combinators
are a subset of iTasks. However, on IOT devices it is useful to continue run-
ning tasks indefinitely, which is done in mTasks using a forever combinator.
This is currently not possible in T̂OP, since it does not support recursion.
In an upcoming version of T̂OP as mentioned in Section 9.3.2, a forever

combinator will be added.
As for iTasks, there is currently no formal semantics for mTasks.

5.6.2 Worfklow modelling

Much research has been done into workflow modelling. This work focusses
on describing the collaboration between subsystems, rather than the com-
munication between them. The systems described in the literature follow a
boxes and arrows model of specifying workflows. Control flow, represented
by arrows, usually can go unrestricted from anywhere to anywhere else

5.6. Related work 77

in a workflow. TOP specifies workflows declaratively, avoiding explicit
specification of control flow.

Workflow patterns Workflow patterns are regarded as special kind of
the design patterns in software engineering. They are recurring patterns in
workflow systems, much like the combinators defined in T̂OP. Work by Aalst
et al. (2003) defines a comprehensive list of these pattens, and examines their
availability in industry workflow software. Workflow patterns are usually
described in terms of control flow graphs, and no formal specification is
given, which makes comparison and formal reasoning more difficult.

Workflow Nets & YAWL Workflow Nets (WFN) (Aalst, 1998) allow for
the modelling and analysis of business processes. They are graphical in
nature, and clearly display how every component is related to each other. A
downside of WFN is that they do not facilitate higher order constructs. Also,
they are often not directly executable.

A language based on WFN that is actually directly executable is YAWL

Aalst and ter Hofstede (2005). It facilitates modelling and execution of
dynamic workflows, with support for and, or and xor workflow patterns. As
mentioned, YAWL programs consist of WFN, and are therefore programmed
visually.

BPEL BPEL (OASIS, 2019) is another popular business process calculus.
The standardised language allows for the specification of actions within
business processes, using an XML format. The language is mainly used for
coordinating web services. Two workflow patterns are supported: execution
of services can be done sequentially or in parallel. On top of that, processes
can be guarded by conditionals. There is no support for higher order pro-
cesses however. Processes described in BPEL can be regarded as activity
graphs, and they can also be rendered as such. The specified processes in
BPEL are directly executable, just like YAWL.

5.6.3 Process algebras

Process algebras model concurrency. They allow for the high-level descrip-
tion of interaction, communication and synchronisation between different
processes. Well known examples of process algebras are CSP (C. A. R. Hoare,
1985) and CCS (Milner, 1989).

78 Chapter 5. TopHat

Differences There are two main differences between TOP and process
algebras. The first is a difference in scope. Process algebras focus on mod-
elling the input/output behaviour of processes, by explicitly stating which
actions are sent and received at certain points in the program. The goal
of process algebras is formal reasoning about the interaction between pro-
cesses. Typically, one wishes to prove properties such as deadlock-freedom,
liveness, or adherence to a protocol specification.

The focus of TOP on the other hand is to model collaboration patterns,
with the explicit goal of not having to specify how exactly subtasks commu-
nicate. The declarative specification of data dependencies between subtasks
enables TOP to hide such details.

The second difference concerns internal communication. Two forms of
communication between tasks exist: Passing values to continuations and
sharing data. This is different from communication in process algebras,
which is based on message-passing.

Similarities There are some aspects that are similar in T̂OP and process
algebras. Internal communication in Hoare’s CSP (C. A. R. Hoare, 1985) is
introduced with the concealment operator. The semantics of CSP requires
that all concealed actions are handled exhaustively before any action with
the environment can take place. This is somewhat similar to T̂OP, where
all enabled internal steps must be taken until the system can react to input
events again. Contrast this with Milner’s CCS (Milner, 1989), where con-
cealed actions are visible to the outside as τ-actions, and can be interleaved
with external communication.

Another similarity between T̂OP and process algebras, or any system
with concurrency for that matter, is the need for synchronisation. Broadly
speaking, concurrency means that different parts of a program can interact
with the environment independently, in an interleaved manner. Synchroni-
sation means that only some, but not all, of the possible interleavings are
desirable. The semantics of the step combinators in T̂OP, together with the
fact that internal communication happens atomically, allows for concise and
intuitive synchronisation code.

5.6.4 Reactive programming

HipHop & Esterel HipHop (Berry, Nicolas, & Serrano, 2011; Berry &
Serrano, 2014) is a programming language tailored to the development
of synchronous reactive web systems. From a single source, both server
and client applications can be generated. Programs are written in the Hop
language, a Scheme dialect. Communication is based on a reactive layer

5.6. Related work 79

embedded in Hop. The set of HipHop reactive statements is based on those
of the Esterel language (Berry & Gonthier, 1992; Boussinot & De Simone,
1991). Each reactive component starts by specifying possible input and
output events. The component then proceeds as a state machine.

Input events are sent to such a machine programmatically using Hop,
or are explicitly wired to events from the client. They are optionally associ-
ated with a Hop value. As Hop is a dynamic language, and HipHop uses
strings to identify events, events and their possible associated values are
not statically checked. Events are aggregated until the moment the machine
is asked to react. The machine is executed and reacts by building a multi-set
of output events. The execution of a HipHop machine is atomic. The set of
inputs is not influenced by the current computations.

As with T̂OP, HipHop is a DSL embedded in a general purpose pro-
gramming language. Another similarity is that both specifications lead to
executable server and client applications from a single source. However,
both HipHop and Esterel are more low level regarding their specification.
Where T̂OP takes tasks and collaboration as a starting point, HipHop fo-
cusses on synchronous communication and atomic execution of reactive
machines.

This difference in focus shows in the way both systems define events. In
HipHop programmers can define and use their own events. Inputs in T̂OP

are not extensible and not visible to the developer. They are a completely
separate entity living on the semantic level.

Another important difference is the way in which both systems handle
events. In HipHop the programmer decides when a machine should process
its events. This could be just one event, or a multi-set of events that are
processed simultaneously. T̂OP always processes an input the moment it
occurs and only handles a single event in one instance.

Functional reactive programming The Functional Reactive Programming
(FRP) paradigm allows programmers to describe dynamic changes of val-
ues in a declarative way. This is done by specifying networks of values,
called behaviours, that can depend on each other and on external events.
Behaviours can change over time, or triggered by events. When a behaviour
changes, all other behaviours that depend on it are updated automatically.
The underlying implementation that takes care of the updating usually can
tie input devices, like mouse and keyboard, to event streams and behaviours
to output facilities, like text fields. This allows for declarative specifications
of applications with user interfaces.

80 Chapter 5. TopHat

The idea of FRP was pioneered by Elliott and Hudak (1997). In the
meantime, there are many variants and implementations, where reactive-
banana (Apfelmus, 2019), FrTime (Cooper & Krishnamurthi, 2004), and
Flapjax (Meyerovich et al., 2009) belong to the most well-known.

FRP and TOP are different systems with different goals. Whereas FRP

expresses automatically updating data dependencies, TOP expresses collab-
oration patterns. TOP has no notion of time. Tasks cannot change sponta-
neously over time, while behaviours can. Only input events can change task
values. The biggest conceptual difference between a workflow in TOP and
a data network in FRP is that an event to a task only causes updates up until
the next step, while an event in FRP propagates through the whole network.

That being said, there are some concepts that are similar in TOP and FRP.
The stepper behaviour, for example, is associated with an event and yields the
value of the most recent event. This is similar to editors in TOP. Furthermore,
both systems can be used to declaratively program user interfaces, albeit
in FRP the programmer has to construct the GUI elements manually, and
connect inputs and outputs to the correct events and behaviours. In TOP
graphical user interfaces are automatically derived.

5.6.5 Session types

Session types are a type discipline that can be used to check whether commu-
nicating programs conform to a certain protocol. Session types are expres-
sions in some process calculus that describe the input/output behaviour of
such programs. Session types are useful for programming languages where
modules communicate with each other via messages, like CSP, π-calculus,
or Go, to name a few. The only form of messages in TOP are input events
which drive execution, but modules do not communicate using messages.
Therefore, session types are not relevant for TOP in the sense used in the
literature.

Formal reasoning about TOP programs is one of our future goals for T̂OP.
The ideas and techniques of session types could be useful for specifying
that a list of inputs of a certain form leads to desired task values. The details
are a topic for future work.

81

Chapter 6

Symbolic TopHat

Task-Oriented Programming (TOP) is a programming paradigm that allows
declarative specification of workflows. TOP is typically used in domains where
functional correctness is essential, and where failure can have financial or strategical
consequences. In this chapter we aim to make formal verification of software written
in TOP easier. Currently, only testing is used to verify that programs behave as
intended. We use symbolic execution to guarantee that no aberrant behaviour can
occur. In the previous chapter we presented T̂OP, a formal language that implements
the core aspects of TOP. In this chapter we develop a symbolic execution semantics
for TopHat. Symbolic execution allows to prove that a given property holds for all
possible execution paths of TopHat programs.

We show that the symbolic execution semantics is consistent with the original
TopHat semantics, by proving soundness and completeness. We present an imple-
mentation of the symbolic execution semantics in Haskell. By running example
programs, we validate our approach. This chapter represents a step forward in the
formal verification of TOP software.

6.1 Introduction

The Task-Oriented Programming paradigm (TOP) is an abstraction over
workflow specifications. The idea of TOP is to describe the work that needs
to be done, in which order, by which person. From this specification, an
application can be generated that helps to coordinate people and machines
to execute the work. The iTasks framework (Plasmeijer et al., 2012) is an
implementation of the paradigm in the functional programming language
Clean. In the previous chapter, we presented the programming language
T̂OP, to distill the core features of TOP into a language suitable for formal
treatment. The usefulness of TOP has been demonstrated in several projects
that used it to implement various applications. It has been used by the
Netherlands Royal Navy (Jansen & Bolderheij, 2018), the Dutch Tax Of-
fice (Stutterheim et al., 2017) and the Dutch Coast Guard (Lijnse et al., 2012).

82 Chapter 6. Symbolic TopHat

Furthermore, it can potentially be applied in domains like healthcare and
Internet of Things (P. Koopman et al., 2018).

Applications in these kinds of domains are often mission critical, where
programming mistakes can have severe consequences. To verify that a T̂OP

program behaves as intended, we would like to show that it satisfies a given
property. A common way to do this is to write test cases, or to generate
random input, and verify that all outcomes satisfy the property. Writing
tests manually is time consuming and cumbersome. Testing interactive
applications needs people to operate the application, maybe making use of
a way to record and replay interactions. With this kind of testing there is no
guarantee that all possible execution paths are covered.

To overcome these issues, we apply symbolic execution. Instead of
executing tasks with test input, or letting a user interactively test the appli-
cation, we run tasks on symbolic input. Symbolic input consists of tokens
that represent any value of a certain type. When a program branches, the
execution engine records the conditions over the symbolic input that lead
to the different branches. These conditions can then be compared to a given
predicate to check if the predicate holds under all conditions. We let an SMT

solver verify these statements.
In this way we can guarantee that given predicates over the outcome of a

TOP program always hold. Since iTasks is not suitable for formal reasoning,
we instead apply symbolic execution to T̂OP as introduced in Chapter 5 and
also in (Steenvoorden, Naus, & Klinik, 2019), by systematically changing
the semantic rules of the original language.

The symbolic execution system for T̂OP will also power the automatic
hint generation presented in Chapter 7.

6.2 Examples

In this section we study three examples to illustrate what kind of properties
of task-oriented programs we would like to prove.

6.2.1 Positive value

This example demonstrates how we can prove that the first observable value
of a program can only be a positive number.

Example 6.2.1
Consider the program in Listing 6.1. It asks the user to input a value of type Int.
This value is then passed on to the right hand side. If the value is greater than zero,
an editor containing the entered value is returned. At this point, the task has an

6.2. Examples 83

observable value, and we consider it done. Otherwise the step does not proceed and
the task does not have an observable value. The user can enter a different input
value.

�Int I λx. if x > 0 then �x else
LISTING 6.1: A task that only steps on a positive input value.

Imagine that we want to prove that no matter which value is given as
input, the first observable value is a value greater than zero.

Symbolic execution of this program proceeds as follows. The symbolic
execution engine generates a fresh symbolic input s for the editor on the
left. The engine then arrives at the conditional. To take the then-branch,
the condition s > 0 needs to hold. This branch will then result in � s, in
which case the program has an observable value. The engine records this
endpoint together with its path condition s > 0. The else-branch applies
if the condition does not hold, but this leads to a failing task. Therefore,
the step is not taken and the task expression is not altered. No additional
program state is generated.

Symbolic execution returns a list of all possible program end states,
together with the path conditions that led to them. If all end states satisfy
the desired property, it is guaranteed that the property holds for all possible
inputs.

In this example, the only end state is the expression � s with path condi-
tion s > 0. From that we can conclude that no matter what input is given,
the only result value possible is greater than zero.

6.2.2 Tax subsidy request

Stutterheim et al. (2017) worked with the Dutch tax office to develop a
demonstrator for a fictional but realistic law about solar panel subsidies.
In this section we study a simplified version of this, translated to T̂OP, to
illustrate how symbolic execution can be used to prove that the program
implements the law.

This example proves that a citizen will get subsidy only under the
following conditions.

• The roofing company has confirmed that they installed solar panels
for the citizen.

• The tax officer has approved the request.

84 Chapter 6. Symbolic TopHat

• The tax officer can only approve the request if the roofing company
has confirmed, and the request is filed within one year of the invoice
date.

• The amount of the granted subsidy is at most 600 EUR.

1let today = 13 Feb 2020 in
2let provideDocuments = �Amount Z �Date in
3let companyConfirm = �True ♦ �False in
4let o�icerApprove = λinvoiceDate. λdate. λconfirmed.
5�False ♦ if (date − invoiceDate < 365 ∧ confirmed)
6then �True
7else in
8provideDocuments Z companyConfirm I
9λ〈〈invoiceAmount, invoiceDate〉 , confirmed〉 .
10o�icerApprove invoiceDate today confirmed I λapproved.
11let subsidyAmount = if approved

12then min 600 (invoiceAmount / 10) else 0 in
13�〈subsidyAmount, approved, confirmed, invoiceDate, today〉

LISTING 6.2: Subsidy request and approval workflow at the Dutch tax office.

FIGURE 6.1: Graphical user interface for the task in Listing 6.2.

Example 6.2.2
Listing 6.2 shows the program. To enhance readability of the example, we omit type
annotations and make use of pattern matching on tuples. The program works as
follows. First, the citizen has to enter their personal information (Line 2). In the
original demonstrator this included the citizen service number, name, and home
address. Here, we simplified the example so that the citizen only has to enter the
invoice date. A date is specified using an integer representing the number of days
since 1 January 2000.

6.2. Examples 85

In the next step (Line 8), in parallel the citizen has to provide the invoice
documents of the installed solar panels, while the roofing company has to confirm
that they have actually installed solar panels at the citizen’s address. Once the
invoice and the confirmation are there, the tax officer has to approve the request
(Line 10). The officer can always decline the request, but they can only approve it if
the roofing company has confirmed and the application date is within one year of
the invoice date (Line 5). The result of the program is the amount of the subsidy,
together with all information needed to prove the required properties (Line 13). The
graphical user interface belonging to two steps in this process are shown in Fig. 6.1.

The result of the overall task is a tuple with the subsidy amount, the
officer’s approval, the roofing company’s confirmation, the invoice amount,
the invoice date, and today’s date. Returning all this information allows
the following predicate to be stated, which verifies the correctness of the
implementation. The predicate has 5 free variables, which correspond to
the returned values.

ψ(s, a, c, i, t) = s ≥ 0⇒ c (6.1)
∧ s > 0⇒ a (6.2)
∧ a⇒ (c ∧ t− i < 365) (6.3)
∧ s ≤ 600 (6.4)
∧ ¬a⇒ s ≡ 0 (6.5)

The predicate ψ states that (6.1) if subsidy s has been payed, the roofing
company must have confirmed c, (6.2) if subsidy has been payed, the officer
must have approved a, (6.3) the officer can approve only if the roofing
company has confirmed and today’s date t is within 356 days of the invoice
date i, and (6.4) the subsidy is maximal 600 EUR. Finally, (6.5) if the officer
has not approved, the subsidy must be 0.

6.2.3 Flight booking

Recall the flight booking system from Section 5.3. We prove that when the
program terminates, every passenger has exactly one seat, and that no two
passengers have the same seat. The example program listed below is a
simplified version of what we presented in Section 5.3.

Example 6.2.3
The program, shown in Listing 6.3, consists of three parallel seat booking tasks
(Line 7). There is a shared list that stores all booked seats so far (Line 2). To book a

86 Chapter 6. Symbolic TopHat

1let maxSeats = 50 in
2let bookedSeats = ref [] in
3let bookSeat = �Int I λx .
4if ¬ (x ∈ !bookedSeats) ∧ x ≤ maxSeats
5then bookedSeats := x :: !bookedSeats I λ_ . �x

6else in
7bookSeat Z bookSeat Z bookSeat I λ_ .
8�(!bookedSeats)

LISTING 6.3: Flight booking.

seat, a passenger has to enter a seat number (Line 3). A guard expression makes
sure that only free seats can be booked (Line 4). The exclamation mark denotes
dereferencing. When the guard is satisfied, the list of booked seats is updated, and
the user can see his booked seat (Line 5). The main expression runs the seat booking
task three times in parallel (Line 7), simulating three concurrent customers. The
program returns the list of booked seats.

With the returned list, we can state the predicate to verify the correctness
of the booking process.

ψ(l) = len l ≡ 3 (6.1)
∧ uniq l (6.2)

The predicate specifies that all three passengers booked exactly one seat
(6.1), and that all seats are unique (6.2), which means that no two passen-
gers booked the same seat. The unary operators for list length (len) and
uniqueness (uniq) are available in the predicate language. List length is a
capability of SMT-LIB, while uniq is our own addition.

6.3 Language

The language presented in this section is nearly identical to the original T̂OP

language presented in the previous chapter. The main difference with the
original grammar is the addition of symbolic values.

Symbolic execution for functional programming languages struggles
with higher order features. This topic is under active study, and is not the
focus of our work (Hallahan, Xue, Bland, Jhala, & Piskac, 2019; Hallahan,
Xue, & Piskac., 2017). Therefore, we restrict symbols to only represent values
of basic types. This restriction is of little importance in the domains we are
interested in. Allowing users to enter higher order values is not useful in
most workflow applications. By restricting the input grammar to first-order

6.3. Language 87

values only, we ensure that no higher-order user input can be entered. Apart
from input, all other higher order features are unrestricted.

The following subsections describe in detail how all elements of the T̂OP

language deal with the addition of symbols.

6.3.1 Expressions, values, and types

The syntax of Symbolic T̂OP is listed in Fig. 6.2. Two main changes have
been made with regards to the original T̂OP grammar. First, symbols s have
been added to the syntax of expressions. However, they are not intended to
be used by programmers, similar to locations l. Instead, they are generated
by the semantics as placeholders for symbolic inputs.

Symbolic expressions

ẽ ::= λx : τ. ẽ | ẽ1 ẽ2 | x – abstraction, application, variable

| c | 〈〉 | u ẽ1 | ẽ1 o ẽ2 – constant, unit, unary, binary operation

| if ẽ1 then ẽ2 else ẽ3 – conditional

| 〈ẽ1, ẽ2〉 | fst ẽ | snd ẽ – pair, projections

| []β | ẽ1 :: ẽ2 – nil, cons

| head ẽ | tail ẽ – first element, list tail

| ref ẽ | !ẽ | ẽ1 := ẽ2 | l – references, location

| p̃ | s – symbolic pretask, symbol

Symbolic Pretasks

p̃ ::= � ẽ | � β | � ẽ – valued editor, unvalued editor, shared editor

| ẽ1 I ẽ2 | ẽ1 B ẽ2 – internal step, external step

| | ẽ1 Z ẽ2 – fail, parallel composition

| ẽ1 � ẽ2 | ẽ1 ♦ ẽ2 – internal choice, external choice

FIGURE 6.2: Syntax of Symbolic T̂OP expressions.

Symbols are treated as values (Fig. 6.3). They have therefore been added
to the grammar of values. Also, every symbol has a type, and basic opera-
tions can take symbols as arguments.

The types of Symbolic T̂OP remain the same. However, we do need an
additional typing rule, T-SYM in Fig. 6.4, to type symbols, since they are
now part of our expression syntax. The type of symbols is kept track of in
the environment Γ.

88 Chapter 6. Symbolic TopHat

Values

ṽ ::= λx : τ. ẽ | 〈ṽ1, ṽ2〉 | 〈〉 | c – abstraction, pair, unit, constant

| []β | ṽ1 :: ṽ2 | l | t̃ – nil, cons, location, task

| u ṽ | ṽ1 o ṽ2 | s – unary/binary operation, symbol

Tasks

t̃ ::= � ṽ | � β | � l – valued editor, unvalued editor, shared editor

| t̃1 I ẽ2 | t̃1 B ẽ2 – internal step, external step

| | t̃1 Z t̃2 – fail, parallel combination

| t̃1 � t̃2 | ẽ1 ♦ ẽ2 – internal choice, external choice

FIGURE 6.3: Syntax of values in Symbolic T̂OP.

T-SYM
s : β ∈ Γ

Γ, Σ ` s : τ

FIGURE 6.4: Additional typing rule for Symbolic T̂OP.

6.3.2 Inputs

In symbolic execution, we do not know what the input of a program will
be. In our case this means that we do not know which events will be sent to
editors. This is reflected in the definition of symbolic inputs and actions in
Fig. 6.5

Symbolic inputs

ı̃ ::= ã | F ı̃ | S ı̃ – symbolic action, to first, to second

Symbolic actions

ã ::= s | C | L | R – symbol, continue, go left, go right

FIGURE 6.5: Syntax of inputs and actions in Symbolic T̂OP.

Inputs are still the same and consist of paths and actions. Paths are
tagged with one or more F (first) and S (second) tags. Actions no longer con-
tain concrete values, but only symbols. This means that instead of concrete
values, editors can only hold symbols.

6.4. Semantics 89

6.3.3 Path conditions

Concrete execution of T̂OP programs is driven by concrete inputs, which
select one branch of conditionals, or make a choice. Since no concrete in-
formation is available during symbolic execution, the symbolic execution
semantics records how each execution path depends on the symbolic input.
This is done by means of path conditions. Fig. 6.6 lists the syntax of path
conditions.

Path conditions

φ ::= c | s | 〈〉 | 〈φ1, φ2〉 – constant, symbol, unit, pairs

| []β | φ1 :: φ2 – nil, cons

| u φ | φ1 o φ2 - unary operation, binary operation

FIGURE 6.6: Syntax of path conditions.

Path conditions are a subset of the values of basic type β. They can
contain symbols, constants, pairs, lists, and operations on them.

6.4 Semantics

In this section we discuss the symbolic execution semantics for T̂OP. The
structure of the symbolic semantics closely resembles that of the concrete
semantics. It consists of three layers, a big step symbolic evaluation seman-
tics for the host language, a big step symbolic normalisation semantics for
the task language, and a small step driving semantics that processes user
inputs.

They are described in the following sections. We will study their interest-
ing aspects, and the changes made with respect to the concrete semantics.

6.4.1 Symbolic evaluation

The host language is a simply typed lambda calculus with references and
basic operations. Most of the symbolic evaluation rules closely resemble
the concrete semantics. The original evaluation relation (↓) had the form
e, σ ↓ v, σ′, where an expression e in a state σ evaluates to a value v in state
σ′. The new relation (

{

) adds path conditions φ to the output and has the
form ẽ, σ̃

{

ṽ, σ̃′, φ. The tilde distinguishes the symbolic variants from the
concrete ones.

The symbolic semantics can generate multiple outcomes. This is denoted
in the evaluation with a line over the result, which can be read as ṽ, σ̃′, φ =

90 Chapter 6. Symbolic TopHat

{(ṽ1, σ̃′1, φ1), · · · , (ṽn, σ̃′n, φn)}. The set that results from symbolic execution
can be interpreted as follows. Each element is a possible endpoint in the
execution of a task. It is guarded by a condition φ over the symbolic input.
Execution only arrives at the symbolic value ṽ and symbolic state σ̃′ when
the path condition φ is satisfied.

To illustrate the difference between concrete and symbolic evaluation,
Fig. 6.7 lists one rule from the concrete semantics and its corresponding
symbolic counterpart.

E-EDIT
e, σ ↓ v, σ′

� e, σ ↓ � v, σ′

SE-EDIT
ẽ, σ̃

{
ṽ, σ̃′, φ

� ẽ, σ̃

{

� ṽ, σ̃′, φ

FIGURE 6.7: The evaluation rule from the concrete and the symbolic semantics for
the editor expression.

The E-EDIT rule evaluates the expression held in an editor to a value. The
SE-EDIT does the same, but since it is concerned with symbolic execution,
the expression can contain symbols. We therefore do not know beforehand
which concrete value will be produced, or even which path the execution
will take. If the expression contains a conditional that depends on a symbol,
there can be multiple possible result values.

Most symbolic rules closely resemble their concrete counterparts, and
follow directly from them.

The full symbolic evaluation semantics is listed in Fig. 6.8.
The most interesting rule is the one for conditionals. The concrete seman-

tics has two separate rules for the then and the else branch. The symbolic
semantics has one combined rule SE-IF. Since ẽ1 can contain symbols, it
can evaluate to multiple values. The rule keeps track of all options. It calcu-
lates the then-branch, and records in the path condition that execution can
only reach this branch if ṽ1 becomes True. The rule does the same for the
else-branch, except it requires that ṽ1 becomes False. Note that both ẽ2 and
ẽ3 are evaluated using the same state σ̃′, which is the resulting state after
evaluating ẽ1.

6.4.2 Observations

The symbolic normalisation and driving semantics make use of observations
on tasks, just like the concrete semantics.

The partial function V can be used to observe the value of a task. Its
definition is unchanged with respect to the original.

6.4. Semantics 91

ẽ, σ̃

{

ṽ, σ̃′, φ

SE-VALUE

ṽ, σ̃

{

ṽ, σ̃, True

SE-FIRST

ẽ, σ̃

{

〈ṽ1, ṽ2〉, σ̃′, φ

fst ẽ, σ̃

{

ṽ1, σ̃′, φ

SE-SECOND

ẽ, σ̃
{

〈ṽ1, ṽ2〉, σ̃′, φ

snd ẽ, σ̃

{

ṽ2, σ̃′, φ

SE-PAIR
ẽ1, σ̃

{

ṽ1, σ̃′, φ1

ẽ2, σ̃′

{

ṽ2, σ̃′′, φ2

〈ẽ1, ẽ2〉, σ̃

{

〈ṽ1, ṽ2〉, σ̃′′, φ1 ∧ φ2

SE-CONS
ẽ1, σ̃

{

ṽ1, σ̃′, φ1

ẽ2, σ̃′

{

ṽ2, σ̃′′, φ2

ẽ1 :: ẽ2, σ̃

{

ṽ1 :: ṽ2, σ̃′′, φ1 ∧ φ2

SE-HEAD
ẽ, σ̃

{

ṽ1 :: ṽ2, σ̃′, φ

head ẽ, σ̃

{

ṽ1, σ̃′, φ

SE-TAIL
ẽ, σ̃

{
ṽ1 :: ṽ2, σ̃′, φ

tail ẽ, σ̃

{

ṽ2, σ̃′, φ

SE-DEREF
ẽ, σ̃

{

l, σ̃′, φ

!ẽ, σ̃

{

σ̃′(l), σ̃′, φ

SE-APP

ẽ1, σ̃

{

λx : τ.ẽ′1, σ̃′, φ1

ẽ2, σ̃′

{
ṽ2, σ̃′′, φ2

ẽ′1[x 7→ ṽ2], σ̃′′

{

ṽ1, σ̃′′′, φ3

ẽ1ẽ2, σ̃
{

ṽ1, σ̃′′′, φ1 ∧ φ2 ∧ φ3

SE-ASSIGN
ẽ1, σ̃

{

l, σ̃′, φ1 ẽ2, σ̃′

{

ṽ2, σ̃′′, φ2

ẽ1 := ẽ2, σ̃

{

〈〉, σ̃′′[l 7→ ṽ2], φ1 ∧ φ2

SE-IF

ẽ1, σ̃

{

ṽ1, σ̃′, φ1
ẽ2, σ̃′

{

ṽ2, σ̃′′, φ2

ẽ3, σ̃′

{

ṽ3, σ̃′′′, φ3

if ẽ1 then ẽ2 else ẽ3, σ̃

{ ṽ2, σ̃′′, φ1 ∧ φ2 ∧ ṽ1

∪ṽ3, σ̃′′′, φ1 ∧ φ3 ∧ ¬ṽ1

SE-EDIT
ẽ, σ̃

{

ṽ, σ̃′, φ

� ẽ, σ̃

{

� ṽ, σ̃′, φ

SE-FAIL

 , σ̃

{

 , σ̃, True

SE-THEN

ẽ1, σ̃

{

t̃1, σ̃′, φ

ẽ1 I ẽ2, σ̃

{

t̃1 I ẽ2, σ̃′, φ

SE-NEXT

ẽ1, σ̃

{

t̃1, σ̃′, φ

ẽ1 B ẽ2, σ̃

{

t̃1 B ẽ2, σ̃′, φ

SE-AND

ẽ1, σ̃

{

t̃1, σ̃′, φ1 ẽ2, σ̃′

{

t̃2, σ̃′′, φ2

ẽ1 Z ẽ2, σ̃

{

t̃1 Z t̃2, σ̃′′, φ1 ∧ φ2

SE-REF
ẽ, σ̃

{

ṽ, σ̃′, φ l < Dom(σ′)

ref ẽ, σ̃

{

l, σ̃′[l 7→ ṽ], φ

SE-OR

ẽ1, σ̃

{

t̃1, σ̃′, φ1 ẽ2, σ̃′

{

t̃2, σ̃′′, φ2

ẽ1 � ẽ2, σ̃

{

t̃1 � t̃2, σ̃′′, φ1 ∧ φ2

SE-UPDATE
ẽ, σ̃

{

l, σ̃′, φ

� ẽ, σ̃

{

� l, σ̃′, φ

FIGURE 6.8: The evaluation semantics of Symbolic T̂OP.

92 Chapter 6. Symbolic TopHat

F : Task× State→ Bool
F (� ṽ, σ̃) = False
F (� β, σ̃) = False
F (� l, σ̃) = False
F (, σ̃) = True
F (t̃1 I ẽ2, σ̃) = F (t̃1, σ̃)
F (t̃1 B ẽ2, σ̃) = F (t̃1, σ̃)
F (t̃1 Z t̃2, σ̃) = F (t̃1, σ̃) ∧ F (t̃2, σ̃)
F (t̃1 � t̃2, σ̃) = F (t̃1, σ̃) ∧ F (t̃2, σ̃)

F (ẽ1 ♦ ẽ2, σ̃) =
∧ ({F (t̃1, σ̃′1) | ẽ1, σ̃

{ {

t̃1, σ̃′1} ∪ {F (t̃2, σ̃′2) | e2, σ̃

{ {

t̃2, σ̃′2}
)

FIGURE 6.9: Task failing observation function F .

The function F observes if a task is failing. Its definition is given in
Fig. 6.9. A task is failing if it is the fail task (), or if it consists of only failing
tasks. This function differs from its concrete counterpart in the clause for
user choice. As symbolic normalisation can yield multiple results, all of the
results must be failing to make a user choice failing.

6.4.3 Normalisation

Normalization (
{ {

) reduces tasks until they are ready to receive input. Very
little has to be changed to accommodate symbolic execution. Just like the
evaluation semantics it now gathers sets of results, each element guarded
by a path condition. Fig. 6.10 lists the normalisation semantics.

ẽ, σ̃

{ {

t̃, σ̃′, φ

SN-DONE

ẽ, σ̃

{

t̃, σ̃′, φ1

t̃, σ̃′ 7{ t̃′, σ̃′′, φ2

σ̃′ = σ̃′′ ∧ t̃ = t̃′

ẽ, σ̃

{ {

t̃, σ̃′, φ1 ∧ φ2

SN-REPEAT

ẽ, σ̃

{

t̃, σ̃′, φ1

t̃, σ̃′ 7{ t̃′, σ̃′′, φ2

σ̃′ , σ̃′′ ∨ t̃ , t̃′

t̃′, σ̃′′

{ {

t̃′′, σ̃′′′, φ3

ẽ, σ̃

{ {

t̃′′, σ̃′′′, φ1 ∧ φ2 ∧ φ3

FIGURE 6.10: Symbolic normalisation semantics.

Normalisation makes use of the small step striding semantics (7{).
Fig. 6.11 lists the symbolic striding semantics.

6.4. Semantics 93

t̃, σ̃ 7{ t̃′, σ̃′, φ

SS-EDIT

� ṽ, σ̃ 7{ � ṽ, σ̃, True

SS-FILL

� β, σ̃ 7{ � β, σ̃, True

SS-UPDATE

� l, σ̃ 7{ � l, σ̃, True

SS-THENCONT

t̃1, σ̃ 7{ t̃′1, σ̃′, φ1 V (t̃′1, σ̃′) = ṽ1

ẽ2 ṽ1, σ̃′

{

t̃2, σ̃′′, φ2 ¬F (t̃2, σ̃′′)

t̃1 I ẽ2, σ̃ 7{ t2, σ′′, φ1 ∧ φ2

SS-THENFAIL

t̃1, σ̃ 7{ t̃′1, σ̃′, φ V (t̃′1, σ̃′) = ṽ1

ẽ2 ṽ1, σ̃′

{

t̃2, σ̃′′, _ F (t̃2, σ̃′′)

t̃1 I ẽ2, σ̃ 7{ t̃′1 I ẽ2, σ̃′, φ

SS-THENSTAY

t̃1, σ̃ 7{ t̃′1, σ̃′, φ

V (t̃′1, σ̃′) = ⊥
t̃1 I ẽ2, σ̃ 7{ t̃′1 I ẽ2, σ̃′, φ

SS-ORNONE

t̃1, σ̃ 7{ t̃′1, σ̃′, φ1 V (t̃′1, σ̃′) = ⊥
t̃2, σ̃′ 7{ t̃′2, σ̃′′, φ2 V (t̃′2, σ̃′′) = ⊥

t̃1 � t̃2, σ̃ 7{ t̃′1 � t̃′2, σ̃′′, φ1 ∧ φ2

SS-ORLEFT

t̃1, σ̃ 7{ t̃′1, σ̃′, φ

V (t̃′1, σ̃′) = ṽ1

t̃1 � t̃2, σ̃ 7{ t̃′1, σ̃′, φ

SS-ORRIGHT

t̃1, σ̃ 7{ t̃′1, σ̃′, φ1 V (t̃′1, σ̃′) = ⊥
t̃2, σ̃′ 7{ t̃′2, σ̃′′, φ2 V (t̃′2, σ̃′′) = ṽ2

t̃1 � t̃2, σ̃ 7{ t̃′2, σ̃′′, φ1 ∧ φ2

SS-FAIL

 , σ̃ 7{ , σ̃, True

SS-XOR

ẽ1 ♦ ẽ2, σ̃ 7{ ẽ1 ♦ ẽ2, σ̃, True

SS-NEXT

t̃1, σ̃ 7{ t̃′1, σ̃′, φ

t̃1 B ẽ2, σ̃ 7{ t̃′1 B ẽ2, σ̃′, φ

SS-AND

t̃1, σ̃ 7{ t̃′1, σ̃′, φ1

t̃2, σ̃′ 7{ t̃′2, σ̃′′, φ2

t̃1 Z t̃2, σ̃ 7{ t̃′1 Z t̃′2, σ̃′′, φ1 ∧ φ2

FIGURE 6.11: The striding semantics of Symbolic T̂OP

94 Chapter 6. Symbolic TopHat

6.4.4 Handling

The handling semantics ({) deals with user input. In the symbolic case
there are symbols instead of concrete inputs. A complete overview of the
rules can be found in Fig. 6.12.

The three rules for the editors (SH-CHANGE, SH-FILL, SH-UPDATE)
clearly show how symbols enter the symbolic execution. The first one for
example generates a fresh symbol s and returns an editor containing it.

There are several task combinators where the result depends on user
input. For example, the parallel combinator (Z) receives an input for either
the left or the right branch. To accommodate for all possibilities, the SH-
AND rule generates both cases. It tags the inputs for the first branch with F
and inputs for the second branch with S.

The same principle applies to the external choice combinator (♦). The
three rules SH-PICKLEFT, SH-PICKRIGHT, and SH-PICK are needed to
disallow choosing failing tasks. There is one rule for the case where only
the right is failing, one rule when the left is failing, and one for when none
of the options are failing.

After input has been handled, tasks are normalised. The combination
of those two steps is taken care of by the driving ({{) semantics, listed in
Fig. 6.14.

6.4.5 Simulating

The symbolic driving semantics is a small step semantics. Every step simu-
lates one symbolic input. To compute every possible execution, the driving
semantics needs to be applied repeatedly, until the task is done. We define a
task to be done when it has an observable value: V (t′, σ′) , ⊥. The simula-
tion function listed in Fig. 6.13 is recursively called to produce a list of end
states and path conditions. It accumulates all symbolic inputs and returns
for each possible execution the observable task value v, the path condition
φ, and the state σ. We consider a task, state and path condition to be an end
state if the task value can be observed, and the path condition is satisfiable,
represented by the function S .

The recursion terminates when one of the following conditions is met.

¬S(φ) When the path condition cannot be satisfied, we know that all future
steps will not be satisfiable either. All future steps will only add more
restrictions to the path condition. No future path condition will be
satisfiable, and we can therefore safely remove it.

V (t, σ) When the current task has a value it is an end state, which we can
return.

6.4. Semantics 95

t̃, σ̃ { t̃′, σ̃′, ı̃, φ

SH-CHANGE
fresh s ṽ, s : β

� ṽ, σ̃ { � s, σ̃, s, True

SH-UPDATE
fresh s σ̃(l), s : β

� l, σ̃ { � l, σ̃[l 7→ s], s, True

SH-FILL
fresh s s : β

� β, σ̃ { � s, σ̃, s, True

SH-PASSNEXT

t̃1, σ̃ { t̃′1, σ̃′, ı̃, φ V (t̃′1, σ̃′) = ⊥
t̃1 B ẽ2, σ̃ { t̃′1 B ẽ2, σ̃′, ı̃, φ

SH-PASSTHEN

t̃1, σ̃ { t̃′1, σ̃′, ı̃, φ

t̃1 I ẽ2, σ̃ { t̃′1 I ẽ2, σ̃′, ı̃, φ

SH-PASSNEXTFAIL

t̃1, σ̃ { t̃′1, σ̃1, ı̃, φ V (t̃′1, σ̃1) = ṽ1

ẽ2 ṽ1, σ̃1

{ {

t̃2, σ̃2, _ F (t̃2, σ̃2)

t̃1 B ẽ2, σ̃ { t̃′1 B ẽ2, σ̃1, ı̃, φ

SH-AND

t̃1, σ̃ { t̃′1, σ̃1, ı̃1, φ1

t̃2, σ̃ { t̃′2, σ̃2, ı̃2, φ2

t̃1 Z t̃2, σ̃ {
t̃′1 Z t̃2, σ̃1, F ı̃1, φ1

∪t̃1 Z t̃′2, σ̃2, S ı̃2, φ2

SH-NEXT

t̃1, σ̃ { t̃′1, σ̃1, ı̃, φ1 V (t̃′1, σ̃1) = ṽ1

ẽ2 ṽ1, σ̃1

{ {

t̃2, σ̃2, φ2 ¬F (t̃2, σ̃2)

t̃1 B ẽ2, σ̃ {
t̃′1 B ẽ2, σ̃1, ı̃, φ1

∪t̃2, σ̃2, C, φ2

SH-OR

t̃1, σ̃ { t̃′1, σ̃1, ı̃1, φ1

t̃2, σ̃ { t̃′2, σ̃2, ı̃2, φ2

t̃1 � t̃2, σ̃ {
t̃′1 � t̃2, σ̃1, F ı̃1, φ1

∪t̃1 � t̃′2, σ̃2, S ı̃2, φ2

SH-PICK

ẽ1, σ̃

{ {

t̃1, σ̃1, φ1 ¬F (t̃1, σ̃1)

ẽ2, σ̃

{ {

t̃2, σ̃2, φ2 ¬F (t̃2, σ̃2)

ẽ1 ♦ ẽ2, σ̃ { t̃1, σ̃1, L, φ1 ∪ t̃2, σ̃2, R, φ2

SH-PICKLEFT

ẽ1, σ̃

{ {

t̃1, σ̃1, φ1 ¬F (t̃1, σ̃1)

ẽ2, σ̃

{ {

t̃2, σ̃2, φ2 F (t̃2, σ̃2)

ẽ1 ♦ ẽ2, σ̃ { t̃1, σ̃1, L, φ1

SH-PICKRIGHT

ẽ1, σ̃

{ {

t̃1, σ̃1, φ1 F (t̃1, σ̃1)

ẽ2, σ̃

{ {

t̃2, σ̃2, φ2 ¬F (t̃2, σ̃2)

ẽ1 ♦ ẽ2, σ̃ { t̃2, σ̃2, R, φ2

FIGURE 6.12: Symbolic handling semantics.

96 Chapter 6. Symbolic TopHat

simulate : Task× State× [Input]× Predicate
→ P(Value× [Input]× Predicate)

simulate (t, σ, I, φ) =
∪{simulate′ (True, t, t′, σ′, I ⊕ [i′], φ ∧ φ′) | t, σ {{ t′, σ′, i′, φ′}
simulate′ : Bool× Task× Task× State× [Input]× Predicate

→ P(Value× [Input]× Predicate)
simulate′ (again, t, t′, σ′, I, φ)
| ¬S(φ) 7→ ∅
| S(φ) ∧ V (t′, σ′) = v 7→ {(v, I, φ)}
| S(φ) ∧ V (t′, σ′) = ⊥ ∧ t′ , t 7→ simulate (t′, σ′, I, φ)
| S(φ) ∧ V (t′, σ′) = ⊥ ∧ t′ = t ∧ again
7→ ∪{simulate′ (False, t′, t′′, σ′′, I ⊕ [i′], φ ∧ φ′) | t′, σ′ {{ t′′, σ′′, i′, φ′}
| S(φ) ∧ V (t′, σ′) = ⊥ ∧ t′ = t ∧ ¬again 7→ ∅

FIGURE 6.13: Simulation function definition.

t̃, σ̃ {{ t̃′, σ̃′, ı̃, φ

SI-HANDLE

t̃, σ̃ { t̃′, σ̃′, ı̃, φ1 t̃′, σ̃′

{ {

t̃′′, σ̃′′, φ2

t̃, σ̃ {{ t̃′′, σ̃′′, ı̃, φ1 ∧ φ2

FIGURE 6.14: Symbolic interacting semantics.

V (t′, σ′) = ⊥∧ t = t′ ∧ ¬again When the current task does not produce a
value, and it is equal to the previous task except from symbol names
in editors, the simulate function performs one look-ahead step in case
the task does proceed when a fresh symbol is entered. This one step
look-ahead is encoded by the parameter again. When this parameter is
set to False, one step look-ahead has been performed and simulate does
not continue further. If the task has a value it is returned, otherwise the
branch is pruned.

To better illustrate how the simulate function works, we study how it
simulates Listing 6.1. Fig. 6.15 gives a schematic overview of the application
of simulate. First, it calls the drive semantics to calculate what input the
task takes. Users can enter a fresh symbol s0, as listed on the left. The
symbolic execution then branches, since it reaches a conditional. Two cases
are generated. Either s0 > 0, the upper branch, or s0 ≤ 0, the branch to
the right. In the first case, the resulting task has a value, and the symbolic
execution ends returning that value and the input. In the second case, the

6.4. Semantics 97

i = s0

i′ = s1

i′′ = s2

∅

φ ′′
=

s2 ≤
0

V
(�

s0 I
. . . , σ)

=
⊥

�
s0 I

. . . =
�

s1 I
. . .

again
=

False

s2
[s0, s1, s2]
(s0 ≤ 0
∧s1 ≤ 0
∧s2 > 0)

φ′′ = s2 > 0

V (� s2, σ) = s2

φ ′
=

s1 ≤
0

V
(�

s0 I
. . . , σ)

=
⊥

�
s0 I

. . . =
�

s1 I
. . .

again
=

True

s1
[s0, s1]
s0 ≤ 0∧ s1 > 0

φ′ = s1 > 0

V (� s1, σ) = s1

φ
=

s0 ≤
0

V
(�

s0 I
. . . , σ)

=
⊥

�
Int I

. . . ,
�

s0 I
. . .

s0
[s0]
s0 > 0

φ = s0 > 0

V (� s0, σ) = s0

FIGURE 6.15: Application of the simulation function to Listing 6.1.

98 Chapter 6. Symbolic TopHat

resulting task does not have a value, and the new task is different from the
previous task. Therefore, it recurses, and simulate is called again.

A fresh symbol s1 is generated. Again, s1 can either be greater than zero,
or less or equal. In the first case, the resulting task has a value, and the
execution ends. In the second case however, the task does not have a value,
and we find that the task has not been altered (apart from the new symbol).
This results in a recursive call to simulate′ with again set to False.

Once more a fresh symbol s2 is generated, and s2 can be greater than
zero, or less or equal. In the first case, the task has a value and we are done.
In the second case, it does not have a value, the task again has not changed,
but again is False and therefore symbolic execution prunes this branch.

This example demonstrates a couple of things. From manual inspection,
it is clear that only the first iteration returns an interesting result. When s0 is
greater than zero, the task results in a value that is greater than zero. When
the input is less than or equal to zero, simulation continues with the task
unchanged.

Why does the simulation still proceed then? Since the editor � changes
to �, the tasks are not the same after the first step. This causes simulate to
run an extra iteration. It finds that the task still does not have a value, but
now the task has changed. Then simulate performs one look-ahead step, by
setting the again-parameter to False. When this look-ahead does not return
a value, the branch is pruned.

6.4.6 Solving

To check the satisfiability of path conditions S(φ), as well as the properties
stated about a program, we make use of an external SMT solver. In the
implementation we use Z3, although any other SMT solver supporting SMT-
LIB could be used.

For Listing 6.1, we would like to prove that after any input sequence I,
the path conditions φ imply that the value v of the resulting task t′ is greater
than 0.

φ ⊃ v > 0 where v = V (t′, σ′)

As shown in Fig. 6.15, there are three paths we need to verify. Therefore, we
send the following three statements to the SMT solver for verification:

1. s0 > 0⇒ s0 > 0
2. s0 ≤ 0∧ s1 > 0⇒ s1 > 0
3. s0 ≤ 0∧ s1 ≤ 0∧ s2 > 0⇒ s2 > 0

In this example all are trivially solvable.

6.4. Semantics 99

6.4.7 Implementation

We implemented our language and its symbolic execution semantics in
Haskell1. With the help of a couple of GHC extensions, the grammar, typing
rules and semantics are almost one-to-one translatable into code. Our tool
generates execution trees like the one shown in Fig. 6.15, which keep track of
intermediate normalisations, symbolic inputs, and path conditions. All path
conditions are converted to SMT-LIB compatible statements and are verified
using the Z3 SMT solver. As of now we do not have a parser, programs must
be specified directly as abstract syntax trees.

As is usually the case with symbolic execution, the number of paths
grows quickly. The examples in Listings 6.2 and 6.3 generate respectively
2112 and 1166 paths, which takes about a minute to calculate. Solving them,
however, is almost instantaneous.

6.4.8 Outlook

Assertions Other work on symbolic execution often uses assertions, which
are included in the program itself. One could imagine an assertion statement
assert ψ t in T̂OP that roughly works as follows. First the SMT solver verifies
the property ψ against the current path condition. If the assertion fails, an
error message is generated. Then the program continues with task t.

Example 6.4.1
Consider the following small example program.

�Int I λx . �(ref x) I λl. assert (!l ≡ x) (� "Done")

This program asks the user to enter an integer. The entered value is then stored
in a reference. The assertion that follows ensures that the store has been updated
correctly. Finally the string "Done" is returned.

Assertions have access to all variables in scope, unlike properties as we
have currently implemented them. We can overcome this by returning all
values of interest at the end of the program.

�Int I λx . �(ref x) I λstore . �"Done" I λ_ . �(x,!store)

It is now possible to verify that the property ψ(x, s) = x ≡ s holds. This
demonstrates that our approach has expressive power similar to assertions.
Having assertions in our language would be more convenient for program-
mers however, and we would like add them in the future.

1https://github.com/timjs/symbolic-tophat-haskell

100 Chapter 6. Symbolic TopHat

Input-dependent predicates Another feature we would like to support
in the future are input-dependent predicates.

Example 6.4.2
Consider the following small program.

�Int I λx . if x > 0 then �"Thank you" else �"Error"

The user inputs an integer. If the integer is larger than zero, the program prints
a thank you message. If the integer is smaller than zero, an error is returned.

If we want to prove that given a positive input, the program never
returns "Error", we need to be able to talk about inputs directly in predicates.
Currently our symbolic execution does not support this.

6.5 Properties

In this section we describe what it means for the symbolic interaction se-
mantics to be correct. We prove it sound and complete with respect to the
concrete interaction semantics of T̂OP. In Chapter 7, we will also prove that
these properties hold for a variant of the simulation function. We expect that
soundness and completeness will also hold for the simulation definition
from Fig. 6.13, but we do not prove this.

To relate the two semantics, we use the concrete inputs listed in Chap-
ter 5.

6.5.1 Soundness

To validate the symbolic execution semantics, we want to show that for ev-
ery individual symbolic execution step there exists a corresponding concrete
one. This soundness property is expressed by Theorem 6.5.1.

Theorem 6.5.1 (Soundness of interact)
For all concrete tasks t, concrete states σ and mappings M = [s0 7→ c0, · · · , sn 7→
cn], we have for all tuples (t̃′, σ̃′, ı̃, φ) in t, σ {{ t̃′, σ̃′, ı̃, φ that Mφ implies
t, σ

Mı̃
=⇒ t′, σ′′ and Mt̃′ ≡ t′ and Mσ̃′ ≡ σ′′.

The proof for this theorem is rather straightforward. Since the driving
semantics makes use of the handling and the normalisation semantics, we
require two lemmas: one showing that the handling semantics is sound,
Lemma 6.5.2, and one showing that the normalisation semantics is sound,
Lemma 6.5.3.

6.5. Properties 101

Lemma 6.5.2 (Soundness of handling)
For all concrete tasks t, concrete states σ and mappings M = [s0 7→ c0, · · · , sn 7→
cn], we have for all tuples (t̃′, σ̃′, ı̃, φ) in t, σ { t̃′, σ̃′, ı̃, φ, that Mφ implies
t, σ

Mı̃−→ t′, σ′ and Mt̃′ ≡ t′ and Mσ̃′ ≡ σ′.

Lemma 6.5.2 is proven by induction over t. The full proof is listed in
Appendix D.1.4.

Lemma 6.5.3 (Soundness of normalisation)
For all concrete expressions e, concrete states σ and mappings M = [s0 7→
c0, · · · , sn 7→ cn], we have for all tuples (t̃, σ̃′, φ) in e, σ

{ {

t̃, σ̃′, φ, that Mφ
implies e, σ ⇓ t′, σ′′ and Mt̃ ≡ t′ and Mσ̃′ ≡ σ′′.

Since Lemma 6.5.3 makes use of both the striding and the evaluation
semantics, we must show soundness for those too.

Lemma 6.5.4 (Soundness of striding)
For all concrete tasks t, concrete states σ and mappings M = [s0 7→ c0, · · · , sn 7→
cn], we have for all tuples (t̃′, σ̃′, φ) in t, σ 7{ t̃′, σ̃′, φ, that Mφ implies t, σ 7→
t′, σ′ and Mt̃′ ≡ t′ ∧Mσ̃′ ≡ σ′.

Lemma 6.5.5 (Soundness of evaluation)
For all concrete expressions e, concrete states σ and mappings M = [s0 7→
c0, · · · , sn 7→ cn], we have for all tuples (ṽ, σ̃′, φ) in e, σ

{

ṽ, σ̃′, φ, that Mφ
implies e, σ ↓ v, σ′ ∧Mṽ ≡ v ∧Mσ̃′ ≡ σ′.

The full proofs of Lemmas 6.5.3 to 6.5.5 are listed in Appendix D.1.

6.5.2 Completeness

We also want to show that for every concrete execution there exists a sym-
bolic one.

To state this Theorem, we require a simulation relation ı̃ ∼ i, which
means that the symbolic input ı̃ follows the same direction as the concrete
input i. This relation is defined below.

Definition 6.5.6 (Input simulation)
A symbolic input ı̃ simulates a concrete input i denoted as ı̃ ∼ i in the following
cases.
s ∼ a, where s is a symbol and a a concrete action.
ı̃ ∼ i ⊃ F ı̃ ∼ F i
ı̃ ∼ i ⊃ S ı̃ ∼ S i

This allows us to define the completeness property as listed in Theo-
rem 6.5.7.

102 Chapter 6. Symbolic TopHat

Theorem 6.5.7 (Completeness of interact)

For all concrete tasks t, concrete states σ and concrete inputs i such that t, σ
i
=⇒

t′, σ′ there exists an ı̃ ∼ i, t̃, σ̃ and φ such that (t̃, σ̃, ı̃, φ) in t, σ {{ t̃, σ̃, ı̃, φ.

The proof of Theorem 6.5.7 is rather simple. We show that handling is
complete (Lemma 6.5.8) and that the subsequent normalisation is complete
(Lemma 6.5.9).

Lemma 6.5.8 (Completeness of handling)

For all concrete tasks t, concrete states σ and concrete inputs i such that t, σ
i−→

t′, σ′ there exists an ı̃ ∼ i, t̃, σ̃ and φ such that (t̃, σ̃, ı̃, φ) in t, σ { t̃, σ̃, ı̃, φ.

Lemma 6.5.8 is proved by induction over t. We only need to show that
every concrete execution is also a symbolic one. The only change needed to
convert from concrete to symbolic is the adaption of the input.

Since handling makes use of normalisation and evaluation, we need to
prove that they too are complete. These properties are listed in Lemmas 6.5.9
and 6.5.10

Lemma 6.5.9 (Completeness of normalisation)
For all concrete expressions e and concrete states σ such that e, σ ⇓ t, σ there
exists a symbolic execution result (t, σ, True) in e, σ

{ {

t̃, σ̃, φ.

Lemma 6.5.10 (Completeness of evaluation)
For all concrete expressions e and concrete states σ such that e, σ ↓ v, σ there
exists a symbolic execution result (v, σ, True) in e, σ

{

ṽ, σ̃, φ.

Lemmas 6.5.9 and 6.5.10 follow trivially, since every concrete execution
in these semantics is also a symbolic one.

6.6 Conclusion

In this chapter, we have demonstrated how to apply symbolic execution
to T̂OP to verify individual programs. We have developed both a formal
system and an implementation of a symbolic execution semantics. Our
approach has been validated by proving the formal system correct, and by
running the implementation on example programs. For these two example
programs, a subsidy request workflow and a flight booking workflow, we
have verified that they adhere to their specifications.

6.7. Related work 103

6.6.1 Future work

There are many ways in which we would like to continue this line of work.
First, we believe that more can be done with symbolic execution. Our

current approach only allows proving predicates over task results and input
values. We cannot, however, prove properties that depend on the order of
the inputs. Since the symbolic execution currently returns a list of symbolic
inputs, we think this extension is feasible.

Second, our symbolic execution only applies to T̂OP. We would like to see
if we can fit it to iTasks. This poses several challenges. iTasks does not have
a formal semantics in the sense that T̂OP has. The current implementation in
Clean is the closest thing available to a formal specification. There are also a
few language features in iTasks that are not covered by T̂OP, for example
loops.

Third, we would like to apply different kinds of analyses altogether. Can
a certain part of the program be reached? Does a certain property hold at
every point in the program? Are two programs equal? And what does it
mean for two programs to be equal? We think that these properties require
a different approach.

6.7 Related work

6.7.1 Symbolic execution

Symbolic execution (Boyer, Elspas, & Levitt, 1975; King, 1975) is typically
being applied to imperative programming languages, for example Bucur,
Kinder, and Candea (2014) prototype a symbolic execution engine for in-
terpreted imperative languages. Cadar, Dunbar, and Engler (2008) use it
to generate test cases for programs that can be compiled to LLVM byte-
code. Jaffar, Murali, Navas, and Santosa (2012) use it for verifying safety
properties of C programs.

In recent years it has been used for functional programming languages
as well. To name some examples, there is ongoing work by Hallahan et
al. (2019) to implement a symbolic execution engine for Haskell. Giantsios,
Papaspyrou, and Sagonas (2017) use symbolic execution for a mix of con-
crete and symbolic testing of programs written in a subset of Core Erlang.
Their goal is to find executions that lead to a runtime error, either due to an
assertion violation or an unhandled exception. Chang, Knauth, and Torlak
(2018) present a symbolic execution engine for a typed lambda calculus
with mutable state where only some language constructs recognise sym-
bolic values. They claim that their approach is easier to implement than

104 Chapter 6. Symbolic TopHat

full symbolic execution and simplifies the burden on the solver, while still
considering all execution paths.

The difficulty of symbolic execution for functional languages lies in sym-
bolic higher-order values, that is functions as arguments to other functions.
Hallahan et al. (2017) solve this with a technique called defunctionalization,
which requires all source code to be present, so that a symbolic function
can only be one of the present lambda expressions or function definitions.
Giantsios et al. (2017) also require all source code to be present, but they only
analyze first-order functions. They can execute higher-order functions, but
only with concrete arguments. Our method also requires closed well-typed
terms, so we never execute a higher-order function in isolation. Furthermore,
we currently do not allow functions and tasks as task values. Together, this
means that symbolic values can never be functions.

6.7.2 Contracts

Another method for guaranteeing correctness of programs are contracts.
Contracts refine static types with additional conditions. They are enforced
at runtime. Contracts were first presented by Meyer (1992) for the Eiffel
programming language. Findler and Felleisen (2002) applied this technique
to functional programming by implementing a contract checker for Scheme.
Their contracts are assertions for higher-order programs. Contracts can be
used to specify properties more fine-grained than what a static type system
could check. It is possible, for example, to refine the arguments or return
values of functions to numbers in a certain range, to positive numbers or
non-empty lists.

Nguyen, Tobin-Hochstadt, and Horn (2017) combine contracts and sym-
bolic execution to provide soft contract checking. The two ideas go hand in
hand in that contracts aid symbolic execution with a language for specifica-
tions and properties for symbolic values, and symbolic execution provides
compile-time guarantees and test case generation. They present a prototype
implementation to verify Racket programs.

6.7.3 Axiomatic program verification

One of the classical methods of proving partial correctness of programs is
Hoare’s axiomatic approach (T. Hoare, 1969), which is based on pre- and
postconditions. See Nielson and Nielson (1992) for a nice introduction to the
topic. The axiomatic approach is usually applied to imperative programs,
requires manually stating loop invariants, and manually carrying out proofs.

6.7. Related work 105

Some work has been done to bring the axiomatic method to functional
programming. The current state of SMT solving allows for automated ex-
traction and solving of a large amount of proof obligations. Notable works
in this field are for example the Hoare Type Theory by Nanevski, Morrisett,
and Birkedal (2006), the Hoare and Dijkstra Monads by Nanevski, Morrisett,
Shinnar, Govereau, and Birkedal (2008); Swamy, Weinberger, Schlesinger,
Chen, and Livshits (2013), or the Hoare logic for the state monad by Swier-
stra (2009).

The difference between the work cited here and our work is that the
axiomatic method focuses on stateful computations, while we try to incor-
porate input as well.

107

Chapter 7

Assistive TopHat

Software that models business workflows is omnipresent in today’s society.
These systems coordinate collaboration in hospitals, companies, and military insti-
tutions. Unfortunately, workflow systems may obfuscate the influence of current
user actions on the desired end result. To make the right decision, users need to over-
see the full process and all information available, both of which are usually buried in
the system. We have developed a way to automatically generate next-step hints for
task-oriented programs. Task-oriented programming provides programmers with
an abstraction over workflow software, while still being expressive enough to de-
scribe real world collaboration. By leveraging symbolic execution, we can calculate
these hints without modification of the original program. To our knowledge, this
is the first time that symbolic execution is used to automatically generate next-
step hints for end users. We prove the generated hints to be sound and complete,
and also demonstrate that the symbolic execution semantics we employ is correct
for sequential input. In addition, we have developed a Haskell implementation
of our automatic next-step hint generation system. By providing next-step hints,
the chance of human error is reduced, while still allowing end users to intervene
if required. The overall performance is raised, since the quality of decisions will
improve.

7.1 Introduction

Software that supports people working together is used in most workplaces
nowadays. Its aim is to automate business workflows, in order to simplify
processes, to improve service, or to contain cost. In settings like hospitals,
first responders and military operations, these systems could even prevent
the loss of lives.

Automation and digitalisation of workflows and business processes
comes at a cost. For end users it can be hard to see how an action influences
their desired goal. They are unable to oversee the complete flow of the
process and there might be an abundance of data that they are not fully

108 Chapter 7. Assistive TopHat

aware of. End users might wonder if checking a box may prevent them, or
someone else, from reaching their goal, or ask themselves if they have taken
all information into consideration before making a decision.

To overcome these difficulties, we propose to integrate a next-step hint
system into workflow software. By combining the symbolic execution se-
mantics for Task-Oriented Programming from the previous chapter and
end-user feedback systems for rule-based problems from Chapter 2, we
develop a next-step hint end-user feedback system for the Task-Oriented
Programming language TopHat (T̂OP) (Steenvoorden et al., 2019). Our solu-
tion, which we call Assistive T̂OP, generates next-step hints from existing
code, and does not require extra work by the programmer. To our knowl-
edge, this is the first work employing symbolic execution to automatically
generate next-step hints for end users.

Providing next-step hints to end users will provide them with a quick
insight in to their situation. It reduces the chance of human error, while
still allowing the user to intervene if required. The quality of decisions will
improve, raising the overall performance (Power, 2002).

We start this chapter by introducing two illustrative examples. Build-
ing further on the system presented in Chapter 6, we show how we use
symbolic execution to automatically generate next-step hints for end users.
It is crucial that these hints are valid, meaning that they allow users to
reach the desired goal. Therefore we prove correctness of the automatic hint
generation system. Our hint generation system relies on symbolic execution
as presented in the previous chapter. There, we proved correctness for the
symbolic semantics for single user inputs. Here we prove the symbolic
execution semantics to be correct for any sequence of user inputs.

7.2 Examples

This section recalls one previous example and introduces one new T̂OP

program. The examples will be used in Section 7.3 to demonstrate how
Assistive T̂OP works, and are included in the implementation.1

7.2.1 Tax subsidy request

Recall the tax subsidy example from Section 6.2.2. We have shown that this
code indeed adheres to the requirements. There we focussed on assisting
the developer by proving the program correct. In this work we focus on
supporting the end user that is requesting a subsidy. The end user wants

1https://github.com/timjs/symbolic-tophat-haskell

7.2. Examples 109

1let fork0 = ref True in
2let fork1 = ref True in
3let fork2 = ref True in
4let pickup = λthis. λthat.
5if !this

6then �(this := False) B λ_.
7if !that then �(this := True) else
8else in
9let scientist = λname. λle�. λright.
10pickup le� right ♦ pickup right le� in
11
12(scientist "Alan Turing" fork0 fork1 Z
13scientist "Grace Hopper" fork1 fork2 Z
14scientist "Ada Lovelace" fork2 fork0)
15I λ_ . �"Full bellies"

LISTING 7.1: Dining philosophers problem
with three computer scientists.

Alan

Grace

Ada

FIGURE 7.1: Rendering with
three philosophers.

the outcome of this program to be a subsidy amount larger than zero. In
Section 7.3.4 we will show how to generate hints for the end user to reach
this goal.

7.2.2 Dining Computer Scientists problem

The dining philosophers problem is a classic concurrency problem in com-
puter science. A number of philosophers sit at a round table with a meal
in front of them. In between the plates lies a fork. To eat their meal, each
philosopher has to acquire two forks. Only after eating his or her meal, is a
philosopher allowed to place the two forks back on the table. This, of course,
means that the philosophers cannot eat at the same time, since there are not
enough forks. Deadlock can occur when all philosophers pick up the fork
to their right (or left). Then, everybody has one fork. This means that each
philosopher cannot start his or her meal. Next to that, a philosopher only
puts a fork back on the table after having eaten.

Example 7.2.1
We look at dining computer scientists, instead of philosophers. Listing 7.1 lists an
implementation in T̂OP for this problem, with three computer scientists. The forks
are represented by references containing Booleans (Lines 1 to 3). Using references

110 Chapter 7. Assistive TopHat

allows tasks to communicate with each other across control flow. The value True
indicates that the fork is available, False indicates that the fork is being used.

Picking up a fork is only possible when the fork is available, i.e. reading the
reference results in True (Line 5). This fork is then marked as being used (Line 6).
Reading a reference l is denoted as !l, assigning a new value v to a reference l is
written as l := v.

The use of references ensures that the neighbouring scientist cannot pick up this
fork: this choice will be disabled. After that, one can press continue if the second
fork is also available (Line 7). For the sake of simplicity, the scientist sets the value
of the first fork to True, making it available again, rather than setting the second
fork to False, and then setting both to True again.

Each computer scientist takes as arguments a name and references to the two
forks that he or she can reach (Line 9). They have a choice between two tasks, one
that picks up the left and then the right fork, and one that first picks up the right
fork followed by the left fork. This is represented with a user choice (♦, Line 10). The
last lines instantiate three computer scientists sitting next to each other (Lines 12
to 14). In TOP terms, this means they collaborate in parallel (Z) while eating their
dinner, sharing some resources, in this case fork0, fork1, and fork2.

By design of T̂OP, the events of picking up a fork are performed sequentially.
That is, when one computer scientist decides to pick up his right fork, we will handle
that event first. After that, we will handle the choices from the other scientists. So,
the order of the events is explicitly determined by the scientists themselves.

In Section 7.3.5 we will analyse this example. Our goal is to provide
each scientist with a hint on which choice to make, so that they can reach
the common goal of full bellies. When the scientists follow these hints, no
deadlock will occur.

7.3 Generating next-step hints

This section introduces our Assistive T̂OP system. The aim of Assistive T̂OP

is to automatically provide next-step hints. When users follow these hints,
they can be sure that they will reach the goal they described beforehand.
Users can, however, still decide to deviate from the given hints.

During the execution of T̂OP programs, users are presented with input
fields, choices and continue buttons. The way in which tasks progress
and the resulting task value depend on these inputs. At any point during
execution, we would like to present users with all possible inputs that lead
users to the goal they have selected. These inputs are either concrete actions,
like continue, pick the left task, pick the right task; or a restricted set of
values to be entered into an editor. This set is restricted, since concrete

7.3. Generating next-step hints 111

values potentially influence the flow of the program. To give a concrete
example, the user should enter an integer, but this integer must be larger
than zero to reach the end goal.

To come to these concrete actions and restricted values, we make use
of symbolic execution. In the next two sections, we briefly describe how
symbolic execution for T̂OP works and recap its symbolic semantics pre-
sented Chapter 6. Thereafter, we show how to turn symbolic execution
results into next-step hints. In Sections 7.3.4 and 7.3.5, we study what these
automatically generated hints look like for the examples from Section 7.2.

All examples have been tested in our implementation. We added As-
sistive T̂OP to our existing implementation of Symbolic T̂OP2, which has
been implemented in Haskell. It uses the Z3 SMT solver under the hood. By
defining the formal hints function directly on top of the symbolic execu-
tion semantics, we can leverage the already existing symbolic execution for
Symbolic T̂OP in the practical implementation.

7.3.1 Symbolic execution

A symbolic execution semantics (Boyer et al., 1975; King, 1975) aims to
execute a program without knowing its input. Instead, symbols are fed
into the program. During evaluation, the influence of values is recorded
in the path condition. The resulting symbolic value together with the path
conditions can be used to prove properties of the program.

�Int Z �Int I λ〈x,y〉 . if x > y then �〈y, x〉 else �〈x, y〉
LISTING 7.2: Ordering of tuple elements.

Consider the tiny example in Listing 7.2. This program asks for two
integer values. After the user has entered this information, the function
to the right of the step combinator makes sure the result will be an editor
containing a pair, where the second element is at least as large as the first.
When we run this program symbolically, we have to create fresh symbols to
be entered in both editors, say s0 and s1. After entering both symbolic values
and then normalising the task, there are two possible outcomes, namely

• 〈s1, s0〉, provided that the path condition φ1 = s0 > s1 holds; or
• 〈s0, s1〉, with path condition φ2 = ¬(s0 > s1).

2https://github.com/timjs/symbolic-tophat-haskell

112 Chapter 7. Assistive TopHat

Concrete Symbolic

Expressions e ẽ
Tasks t t̃
States σ σ̃
Inputs i ı̃

Evaluation e, σ ↓ v, σ′ ẽ, σ̃

{

ṽ, σ̃′, φ

Normalisation e, σ ⇓ t, σ′ ẽ, σ̃
{ {

t̃, σ̃′, φ

Striding t, σ 7→ t′, σ′ t̃, σ̃ 7{ t̃′, σ̃′, φ

Handling t, σ
i−→ t′, σ′ t̃, σ̃ { t̃′, σ̃′, ı̃, φ

Interacting t, σ
i
=⇒ t′, σ′ t̃, σ̃ {{ t̃′, σ̃′, ı̃, φ

TABLE 7.1: Overview of meta variables and semantic relations for concrete and
symbolic evaluations.

Now, the property that we want to prove for this program is that no
matter what the input is, the second element should always be larger than or
equal to the first. We write this property as ψ(〈a, b〉) = a ≤ b. Looking at the
two symbolic runs, we first need to verify that the symbolic runs are indeed
viable. This is done by checking that both φ1 and φ2 are satisfiable, written
S(φ1) and S(φ2). Symbolic runs with a path condition that is not satisfiable
are discarded. Finally, we check that both path conditions conform to the
goal property ψ, which is the case. Therefore, we can conclude that the
property holds. When applying this technique to programs, it is a powerful
tool to show that a program behaves as expected.

7.3.2 Symbolic semantics

Chapter 6 introduced the symbolic execution semantics for T̂OP, which we
briefly repeat here.

Table 7.1 gives an overview of the entities in the concrete world, and
their symbolic counterparts. Concrete expressions are a subset of symbolic
expressions. Therefore, symbolic semantic relations can be applied on con-
crete expressions, as well as symbolic expressions.

The symbolic interaction semantics ({{) results in a set of symbolic
runs, each of them just containing one symbolic input. In other words, the
symbolic interaction semantics just looks ahead one symbolic interaction.
To be able to reason about an end state after multiple symbolic interactions,
we introduce the notion of simulation. Informally, simulation performs mul-
tiple symbolic interactions after each other, until the rewritten task has an
observable value. I.e. if n is the number of interactions needed to be done,

7.3. Generating next-step hints 113

V (t′i, σ′i) has a result for i = n but is undefined for all i < n. Apart from
this restriction, we want to permit only viable executions. This is enforced
by validating the satisfiability (S) of the conjunction of all sequential path
conditions. More formally, simulating a task for multiple user inputs is
defined as follows.

Definition 7.3.1 (Simulation ({{∗))
Let t and σ be a concrete task and concrete state. We define the simulation relation

t, σ {{
∗ ṽ, Ĩ, Φ

to be the set of results after performing symbolic interaction n times:

t, σ {{ t̃1, σ̃1, ı̃1, φ1 {{ · · · {{ t̃n, σ̃n, ı̃n, φn

where:

• the nth task has a value: V (t̃n, σ̃n) = ṽ;
• all tasks before do not have a value: V (t̃i<n, σ̃i<n) = ⊥;
• Ĩ = ı̃1 · · · ı̃n is the concatenation of all symbolic inputs generated along the

way;
• Φ = φ1 ∧ · · · ∧ φn, is the conjunction of all path conditions encountered.

Furthermore we require that:

• the resulting predicate is satisfiable: S(Φ).

The simulation definition used in this chapter differs from the one in
the previous chapter. Previously, infinite symbolic executions were filtered
out by allowing two steps look-ahead in case of idempotent executions. The
definition above only allows finite executions by definition.

7.3.3 Next-step hints observation

As we have seen in Definition 7.3.1, a symbolic task t̃ is considered done as
soon as it has an observable value ṽ. To calculate next-step hints, the user
needs to formulate a goal over this resulting value. The simplest goal is a
predicate that always returns True, which means that a user just intends
to reach the end of the task. Only when a goal has been defined, we can
calculate next-step hints for end users.

Hints are calculated by means of the H function listed in Fig. 7.2. As
input, it receives a concrete task t and concrete state σ together with a goal
predicate g. The hints calculation simulates t starting in σ. This results in a
set of symbolic values ṽ, together with a list of symbolic inputs ĩ · Ĩ and a

114 Chapter 7. Assistive TopHat

H : Task× State× (Value→ Bool)→ P(Input× Predicate)
H(t, σ, g) = {(ı̃, Φ ∧ g(ṽ)) |

(
t, σ {{∗ ṽ, ı̃ :: Ĩ, Φ

)
, S
(
Φ ∧ g(ṽ)

)
}

FIGURE 7.2: Definition of next-step hint function.

condition Φ to reach this path. We only want to use the symbolic executions
that satisfy the goal g when applied to ṽ. Since ṽ could contain symbols,
it might be the case that g(ṽ) is symbolic. It therefore forms an additional
constraint on the symbolic input, and we require that the conjunction of the
path condition with the goal is satisfiable (S(Φ∧ g(ṽ))). From the executions
that fulfil this requirement, we return the first symbolic input ı̃ from the
complete list of inputs ı̃ :: Ĩ, together with the full condition that must hold
(Φ ∧ g(ṽ)). The resulting set contains pairs of symbolic inputs guarded by
this condition.

To get a better understanding howHworks, we study it more concretely
in the next subsections. Section 7.3.4 demonstrates on the basis of the tax
example briefly repeated in Section 7.2.1, how the results of symbolic execu-
tion are used to construct automatic next-step hints. Section 7.3.5 shows how
hints can be generated during the execution of the example T̂OP program
listed in Section 7.2.2.

7.3.4 Tax subsidy request

Recall the tax example program in T̂OP from Section 6.2, which models the
application for a solar panel tax refund. The user enters the invoice date
and invoice amount, the installation company confirms, and finally the tax
officer either approves or denies the request.

In this section, we will demonstrate what symbolic execution looks like
for this example, and how we generate next-step hints from the symbolic
execution results. First, we call the simulate function {{∗ on the program,
with an empty state. The resulting set of symbolic executions is listed in
Table 7.2. Each line represents one symbolic execution. In the first column,
the resulting symbolic value ṽ is listed. The second column lists the symbolic
input Ĩ that was produced to arrive at that value, followed by the path
condition Φ in the third column. The symbolic values that are produced are
si for the invoice date and sa for the invoice amount.

The definition ofH describes how these results should be used to calcu-
late next-step hints. First of all, we need a goal g to select the symbolic runs
that we are interested in. The most straight forward goal would be that we
want to end up in a situation where we get a subsidy amount larger than
zero. This goal can be formulated as g(〈v, _, _, _, _〉) = v > 0.

7.3. Generating next-step hints 115

Symbolic value (ṽ) Symbolic input (Ĩ) Path condition (Φ)

〈min(600, sa/10), True, True〉 F F sa · F S si · S L · S (13 Feb 2020− si) < 365 days
〈min(600, sa/10), True, True〉 F S si · F F sa · S L · S (13 Feb 2020− si) < 365 days
〈min(600, sa/10), True, True〉 S L · F F sa · F S si · S (13 Feb 2020− si) < 365 days
〈min(600, sa/10), True, True〉 S L · F S si · F F sa · S (13 Feb 2020− si) < 365 days
〈min(600, sa/10), True, True〉 F S si · S L · F F sa · S (13 Feb 2020− si) < 365 days
〈min(600, sa/10), True, True〉 F F sa · S L · F S si · S (13 Feb 2020− si) < 365 days
〈0, False, True〉 F F sa · F S si · S L · F True
〈0, False, True〉 F S si · F F sa · S L · F True
〈0, False, True〉 S L · F F sa · F S si · F True
〈0, False, True〉 S L · F S si · F F sa · F True
〈0, False, True〉 F S si · S L · F F sa · F True
〈0, False, True〉 F F sa · S L · F S si · F True
〈0, False, False〉 F F sa · F S si · S · F True
〈0, False, False〉 F S si · F F sa · S · F True
〈0, False, False〉 S S · F F sa · F S si · F True
〈0, False, False〉 S · F S si · F F sa · F True
〈0, False, False〉 F S si · S · F F sa · F True
〈0, False, False〉 F F sa · S · F S si · F True

TABLE 7.2: The results of simulating the program from Listing 6.2. Only the first
three elements of the symbolic value ṽ are shown for space reasons.

The first six symbolic runs listed in Table 7.2 fulfil this goal condition.
From those runs, we then take the first symbolic input, together with the
path condition conjugated with the goal. After removing duplicates and
redundant information, the result ofH is as follows.

〈F F sa , min(600, sa/10) > 0〉
〈F S si , (13 Feb 2020− si) < 365 days〉
〈S L , True〉

This means that, at this stage, users have three possible options.3

1. The applicant may enter an amount sa for which
min(600, sa/10) > 0 should hold.

2. The applicant may enter an invoice date si for which
(13 Feb 2020− si) < 365 days should hold.

3. The company should take the left choice (L) to confirm they installed
the solar panels.

7.3.5 Dining Computer Scientists

Recall the example program Dining Computer Scientists from Section 7.2.2.
Three computer scientists sit at a table and have to coordinate their eating.

3 Note that the first branch, entering an amount, is denoted by F F; the second branch,
entering the invoice date, is denoted by F S; and the third branch, making a left/right choice,
is denoted by S.

116 Chapter 7. Assistive TopHat

t = (scientist ”Alan Turing” fork0 fork1Z
�〈〉Bλ_.

if !fork1 then fork2 := True else Z
�〈〉Bλ_.

if !fork2 then fork0 := True else)
I λ_.� ”Full bellies”

σ = {fork0 7→ False, fork1 7→ True, fork2 7→ False}
Alan

Grace

Ada

FIGURE 7.3: Task, state and visual representation of dining computer scientists
after two moves.

We want to calculate all possible next steps that lead to the goal. The goal in
this example is for all computer scientists to finish their meal. In terms of
the resulting task value, this means that we want to reach the value "Full
bellies". Witten as a predicate, we get g(v) = v ≡ "Full bellies".

Let us assume that both Grace Hopper and Ada Lovelace have already
picked up the forks to their left (fork2 and fork0 respectively). We then find
ourselves in the situation shown in Fig. 7.3.

CallingH(t, σ, g) will result in just one hint, namely

〈S F C, True〉

This means that the only step towards goal g is for the second scientist,4

which is Grace Hopper, to pick up the right fork. Although it is also possible
for Alan Turing to pick up the fork to his left, this step is not a valid hint
and performing this action will result in deadlock.

7.4 Properties

In this section, we want to validate our approach by proving correctness of
Assistive T̂OP. For the hints function, which forms the heart of Assistive T̂OP,
we want to prove that its results are both sound and complete. Since the
hints function relies on Symbolic T̂OP, and more specifically, the updated
definition of the simulate relation, we first prove correctness of simulate.

4 The third branch is denoted by S F. The action C means pushing the continue button.

7.4. Properties 117

7.4.1 Correctness of simulate

The symbolic execution semantics is correct when all symbolic runs re-
late to a concrete run, and the other way around, when all concrete runs
are contained in the set of all symbolic executions. These properties are,
respectively, soundness and completeness.

The simulation applies symbolic interaction multiple times. To prove
certain properties with respect to the concrete semantics, we need a concrete
analog of simulation. Therefore, we define execution, which applies concrete
interaction multiple times.

Definition 7.4.1 (Execution (=⇒∗))
Let t be a concrete task, σ a concrete state, and I = i1 · · · in a list of n concrete
inputs. We define the execution relation

t, σ
I
=⇒∗ v

to be the value of task t after performing concrete interaction for each input i in I:

t, σ
i1=⇒ t1, σ1

i2=⇒ · · · in=⇒ tn, σn

where

• v is the value of tn: V (tn, σn) = v; and
• all tasks before tn do not have a value: V (ti<n, σi<n) = ⊥.

We also require the notion of input simulation and the functions SymOf
and ValOf , which is defined as follows.

Definition 7.4.2 (Input simulation)
A symbolic input ı̃ simulates a concrete input i denoted as ı̃ ∼ i in the following
cases.

s ∼ a where s is a symbol and a a concrete action.
F ı̃ ∼ F i if ı̃ ∼ i
S ı̃ ∼ S i if ı̃ ∼ i

ValOf : Inputs→ Values
ValOf (F i) = ValOf (i)
ValOf (S i) = ValOf (i)
ValOf (c) = c
ValOf (_) = ⊥

SymOf : Symbolic Inputs→ Symbolic Values
SymOf (F i) = SymOf (i)
SymOf (S i) = SymOf (i)
SymOf (s) = s
SymOf (_) = ⊥

Using execution, input simulation, and the functions SymOf and ValOf ,
we can state soundness and completeness for simulation as follows.

118 Chapter 7. Assistive TopHat

Lemma 7.4.3 (Soundness of simulate)
For all tasks t and states σ such that t, σ {{∗ ṽ, Ĩ, Φ where Ĩ = ı̃0 · · · ı̃n, for each
triple of results 〈ṽ, Ĩ, Φ〉 there exists a concrete input I = i0 · · · in with the same
length as the symbolic input Ĩ such that t, σ

I
=⇒∗ v with [si 7→ ci]ṽ = v and

[si 7→ ci]Φ where SymOf (ı̃i) = si and ValOf (ii) = ci.

Lemma 7.4.4 (Completeness of simulate)

For all tasks t, states σ, and lists of input I = i0 · · · in such that t, σ
I
=⇒∗ v, there

exists a symbolic value ṽ and a symbolic input Ĩ = ı̃0 · · · ı̃n with the same length
as I, such that (ṽ, Ĩ, Φ) ∈ t, σ {{∗ ṽ, Ĩ, Φ, with ı̃i ∼ ii, [si 7→ ci]ṽ = v and
[si 7→ ci]Φ, where SymOf (ı̃i) = si and ValOf (ii) = ci.

Our strategy to prove these two lemmas is outlined in Fig. 7.4. At the
top, we start out with any task t and state σ. The left side of the diagram
is an overview of the execute function. Inputs i1 until in are sequentially
applied, until the task has an observable value.

On the right side, symbolic execution is performed. One step of the
symbolic interaction semantics is taken, which results in a symbolic task,
state, input and a path condition. Provided that the path condition holds,
interaction is executed sequentially until the symbolic task has an observable
symbolic value.

Proving soundness and completeness of simulation now comes down
to relating the left and right side of the diagram. From symbolic to concrete
(right to left) is soundness, as stated in Lemma 7.4.3. From concrete to
symbolic (left to right) is completeness, as stated in Lemma 7.4.4.

Since simulation and execution rely on the (symbolic) handling seman-
tics, we prove soundness and completeness of those semantics first. Looking
at Fig. 7.4, there are two different settings in which the (symbolic) handling
semantics are applied. At the top, both symbolic and concrete execution start
out with the same task and state. But further down, the task and state differ
for both semantics. The task and state are related to each other however.
The symbolic semantics introduces symbols, the concrete semantics handles
concrete values. This relation is expressed by the consistency relation listed
in Definition 7.4.5.

Definition 7.4.5 (Consistency relation�)
A concrete task t and concrete state σ are considered to be consistent with a
symbolic task t̃, symbolic state σ̃ and path condition Φ under a certain mapping
M = [s1 7→ c1, · · · , sn, 7→ cn], denoted as t, σ �M t̃, σ̃, Φ if and only if Mt̃ = t,
Mσ̃ = σ and MΦ.

Now Lemma 7.4.6 and Lemma 7.4.7 express soundness and complete-
ness of interacting respectively.

7.4. Properties 119

t, σ t, σ �[] t, σ, True

t1, σ1 t̃1, σ̃1, ı̃1, φ1

t1, σ1 �[s1 7→c1] t̃1, σ̃1, φ1

S(φ1)
V (t1, σ1) = ⊥

...
...

tk, σk t̃k, σ̃k, ı̃k, φk

tk, σk �[s1 7→c1,··· ,sk 7→ck] t̃k, σ̃k, φ1 ∧ · · · ∧ φk
S(φ1 ∧ · · · ∧ φk)
V (tk, σk) = ⊥

...
...

tn, σn t̃n, σ̃n, ı̃n, φn

tn, σn �[s1 7→c1,··· ,sn 7→cn] t̃n, σ̃n, φ1 ∧ · · · ∧ φn
S(φ1 ∧ · · · ∧ φn)
V (tn, σn) = v V (t̃n, σ̃n) = ṽ
I = [i1, · · · , in] Ĩ = [ı̃1, · · · , ı̃n]

i1

ik

in

Lemma 7.4.7

Lemma 7.4.6

Lemma 7.4.7

Lemma 7.4.6

Lemma 7.4.4

Lemma 7.4.3

FIGURE 7.4: Proof structure

120 Chapter 7. Assistive TopHat

Lemma 7.4.6 (Soundness of interacting)
For all concrete tasks t, concrete states σ, symbolic tasks t̃, symbolic states σ̃ path
conditions Φ and mappings M, we have that t, σ �M t̃, σ̃, Φ implies that for all
tuples (t̃′, σ̃′, ı̃, φ) in t̃, σ̃ {{ t̃′, σ̃′, ı̃, φ, S(Φ ∧ φ) implies that there exists an

input i such that ı̃ ∼ i, t, σ
i
=⇒ t′, σ′ and t′, σ′ �[s 7→c]M t̃′, σ̃′, Φ ∧ φ where

SymOf (ı̃) = s and ValOf (i) = c.

Lemma 7.4.7 (Completeness of interacting)
For all concrete tasks t, concrete states σ, symbolic tasks t̃, symbolic states σ̃
path conditions Φ and mappings M, we have that t, σ �M t̃, σ̃, Φ implies that

for all inputs i such that t, σ
i
=⇒ t′, σ′, there exists a symbolic input ı̃, ı̃ ∼ i

such that t̃, σ̃ {{ t̃′, σ̃′, ı̃, φ, S(Φ ∧ φ) and t′, σ′ �[s 7→c]M t̃′, σ̃′, Φ ∧ φ where
SymOf (ı̃) = s and ValOf (i) = c.

In other words, if a symbolic and concrete task and state are related,
they will still be related after (symbolic) handling. The top case, where both
the symbolic and concrete semantics start out with the same task and state,
can be seen as a special case of the consistency relation. Obviously a task
and state are consistent with themselves, using the empty mapping and the
path condition True.

The full proof of all four lemmas is given in Appendix E.

7.4.2 Correctness of hints

Now that soundness and completeness of simulate have been proven, we
can prove that our hints function produces correct hints. Intuitively, for a
next-step hint to be correct, it should adhere to the following requirements:

• it leads to concrete input users can actually insert; and
• when users follow the hint, the end goal is still reachable.

Moreover, a set of next-step hints is correct when:

• each hint it contains is correct; and
• it covers all possible inputs that lead to the end goal.

We separate these requirements into two lemmas: soundness and com-
pleteness.

Theorem 7.4.8 (Soundness of hints)
For all tasks t, states σ, and goals g, for every next-step hint (ı̃, Φ) inH(t, σ, g),
there exists a sequence of concrete inputs I and a concrete input i such that ı̃ ∼
i, S([s 7→ c]Φ), t, σ

i
=⇒ t′, σ′

I
=⇒∗ v and g(v), where SymOf (ı̃) = s and

ValOf (i) = c.

7.5. Related work 121

Proof: Theorem 7.4.8 follows from the definition ofH and Lemma 7.4.3 as
follows.

The definition of H gives us that for every pair (ı̃, Φ) produced by H,
there exists a triple (ṽ, ı̃ :: ĩs, Φ) with S

(
Φ∧ g(ṽ)

)
. Then by Lemma 7.4.3 we

have that there exists a sequence of concrete inputs I such that t, σ
I
=⇒∗ v

and g(v). �

Theorem 7.4.9 (Completeness of hints)

For all tasks t, states σ, lists of input i · I, and goals g, if t, σ
i::I
=⇒∗ v and g(v), then

there exists a symbolic input ı̃ and path condition Φ such that (ı̃, Φ) ∈ H(t, σ, g)
with ı̃ ∼ i and S

(
[s 7→ c]Φ

)
with ValOf (i) = c and SymOf (ı̃) = s.

Proof: To prove that i is contained in H(t, σ, g), we need to show that
t, σ {{∗ (ṽ, ı̃ :: Ĩ, Φ), with ı̃ ∼ i and S

(
[s0 7→ c0, · · · , sn 7→ cn] ∧ g(ṽ)

)
, with

i :: I = [i0, · · · , in], ı̃ :: Ĩ = [ı̃0, · · · , ı̃n], ValOf (i0) = c0, · · · , ValOf (in) = cn
and SymOf (ı̃0) = s0, · · · , SymOf (ı̃n) = sn.

By Lemma 7.4.4, we directly obtain that this indeed exists. Therefore we
know that ı̃ and Φ exist. �

7.5 Related work

In the first part of this dissertation, we have attempted to provide end-
users with next-step hints by viewing workflows as rule-based problems.
By abstracting over workflows, reasoning about them becomes simpler. A
standard search algorithm can be run to find a path to the desired goal state.
The main drawback of this approach however is that a programmer needs
to augment existing workflows with extra information to convert it to a
rule-based problem.

Stutterheim et al. (Stutterheim et al., 2014) have developed Tonic, a task
visualiser for iTasks with limited path prediction capabilities. The main
goal is not to provide hints to end-users, but the system is able to handle
the complete task language, and visualise the effects of user input on the
progression of tasks.

To overcome the problems of our own previous research and the limited
use of Tonic for end-user hints, we have combined symbolic execution,
together with workflow modelling and next-step hint generation. To our
knowledge, this is the first work describing the combination of these tech-
niques in this way. The different components coming together in this chapter
have been studied extensively. Section 6.7.1 gives an overview of related
work on symbolic execution, Section 2.8 gives related work on workflow

122 Chapter 7. Assistive TopHat

modelling, and the following section presents related work on automatic
hint generation in intelligent tutoring systems.

7.5.1 Automatic hint generation in intelligent tutoring systems

The intelligent tutoring systems (ITS) research community is very large.
Work that is most relevant to our own is the research into automatic hint
generation. More traditional ITSs rely heavily on experts to write dedicated
hints for every specific case of an exercise. It is not uncommon that about 200-
300 hours of development time is required per hour of instructions (Aleven,
McLaren, Sewall, & Koedinger, 2009; Murray, 2003; Sottilare, Graesser, Hu,
& Brawner, 2015). Automatic hint generation attempts to partly overcome
this burden by calculating a hint rather than having every case specified,
and thus reducing the amount of work required in the development of
instructions.

Heeren et al. (Heeren & Jeuring, 2014) develop a framework for so called
domain reasoners that allow for automatic hint generation. Feedback is
calculated automatically from a high-level description of an exercise class.
Their approach is applicable to domains like logic, mathematics and linear
algebra. Paquette et al. (Paquette, Lebeau, Beaulieu, & Mayers, 2012) present
a different automatic next-step hint framework, that is used to provide hints
to students in a floating-point number conversion exercise.

Based on the work mentioned above by Heeren et al., an ITS for Haskell
exercises has been developed by Gerdes et al. (Gerdes, Heeren, Jeuring, &
van Binsbergen, 2017). It turns out that programming exercises is a popular
area for automatic hint generation. Keuning et al. (Keuning, Jeuring, &
Heeren, 2019) have written a literature study of this research area.

123

Part III

Conclusions

125

Chapter 8

Conclusion

Task-oriented programming (TOP) is a programming paradigm that fo-
cusses on people working together. It aims to provide a high level of ab-
straction over workflow systems, while still being expressive enough to
model real world collaboration. It only exists in implementation, the most
used system being iTasks. To prepare TOP for formal treatment, we have
answered the following question.

What is the essence of the task-oriented programming paradigm?

In Chapter 4, I have presented an informal description of the essence of
Task-oriented Programming (TOP). Programs written in TOP are called
tasks. Tasks model collaboration, tasks are reusable, tasks are driven by
user input, tasks can be observed, tasks are never done, tasks can share
information and tasks are predictable.

Distilling those informal concepts into a concrete semantics, three con-
cepts are essential: editors, combinators and shared data.

Then in Chapter 5, we formalise the informal TOP description into the
programming language T̂OP. This is done by embedding a task layer in
a simply typed lambda calculus with references, pairs and lists. A type
system is given for T̂OP, as well as a formal semantics. By separating the
host language from the task layer completely, it is clear what functionality
lies where.

What makes these semantics novel is the fact that T̂OP supports higher
order workflows, and that it models communication with users, communi-
cation along control flow and communication across control flow. This sets
it apart from other workflow modelling languages like workflow nets and
BPEL that do not support higher order constructs.

For T̂OP, type preservation is proven. An implementation in Haskell and
an implementation on top of iTasks is available.

126 Chapter 8. Conclusion

To ensure that T̂OP programs adhere to their specification, we want
to prove them correct. By providing an actual proof of correctness, we
are certain that programs never produce unexpected results. To do so, we
answered the following question.

How can we define and guarantee properties of tasks?

We have described how to define properties over tasks. This is done by
defining a predicate over the value of a task. A consequence of this definition
is that we can only prove properties that must hold at the point where a
task has an observable value.

To guarantee that a property holds, we have constructed a symbolic
execution semantics. This semantics is able to simulate every execution.
Instead of running a task on actual user input, symbols are entered in to it.
The result of a task simulation is a set of pairs containing a symbolic task
value, guarded by a path condition.

We have shown that when a predicate holds for every symbolic task
value, that the property is guaranteed to hold for every task execution. We
have proven the symbolic semantics to be sound and complete with respect
to the original T̂OP semantics.

To support workers using workflow software, we want to provide them
with feedback specific to their situation. Decision support systems are
proven to be effective in supporting users making choices in workflow
systems. They come at a cost however. Significant investment is required
in developing them, and once developed, these systems are very rigid. By
answering the following question, we have attempted to alleviate these
drawbacks by reducing the effort that is required in the development of
such systems.

How can we calculate next-step hints from a workflow specification?

I have presented two different approaches to calculate next-step hints from
a workflow specification.

Part I offers a framework to programmers to easily translate their work-
flow to make it tractable to generic solving. By describing the workflow in a
special domain-specific language (DSL), we are able to run generic search
algorithms on it. The DSL is constructed in such a way that it supports com-
mon workflow patterns. A goal is defined in terms of a predicate over the
end state. Several search algorithms from the artificial intelligence domain
are made available in the framework, to find traces that lead to the defined
goal. From these traces, hint information can be generated.

Chapter 8. Conclusion 127

To demonstrate that the framework is indeed able to deal with different
kinds of problems, we have implemented several examples. These examples
come from workflow systems, computer games and intelligent tutoring
systems. These implementations show that our DLS is expressive enough to
capture a wide variety of problems, and that the search algorithms included
in the framework are adequate.

When comparing this solution to other workflow problem modelling
languages, we find that our solution offers more flexibility, and allows
programmers to better describe problems. Existing systems, like PDDL,
SITPLAN, STRIPS and PLANNER often have big limitations, like finite
space-state, finite set of conditions, or an absence of solving algorithms.

Part II takes a different approach. Instead of having a programmer trans-
late a problem into a special DSL, we are able to calculate hints for any
T̂OP program, without alterations. To achieve this, we leverage symbolic
execution. To calculate next-step hints for a T̂OP program, first a goal over
the resulting value of a program is formulated. The program is then sym-
bolically executed. From all the symbolic runs, those that fulfil the goal
condition are selected. By returning the input that each of those runs re-
quires, we automatically calculate hints for any TOP program, without
changing the program.

The advantage of this method is that absolutely no interference of the
programmer is required. The program can remain unchanged, and any
changes made to the program are directly taken into account when calculat-
ing hints, making this approach extremely flexible.

The automatic next-step hint system based on symbolic execution is
shown to be sound and complete. This is done by first showing the symbolic
execution semantics sound and complete, followed by a proof that the hints
themselves are sound and complete.

This approach has several benefits when compared to traditional de-
cision support systems (DSSs). There is no need to develop a model for
each problem individually. Instead, the existing implementation can directly
be used to calculate next-step hints. This makes our approach less costly,
quicker to develop and more flexible.

129

Chapter 9

Future work

Doing science is like shining a spotlight into the dark. The more knowledge
we uncover, the wider the beam becomes. Although the illuminated area
becomes bigger, the area that we know we cannot see increases faster.

The same holds true for the research presented in this dissertation. The
following sections list many suggestions for future work. They are divided
over three main areas; end-user run-time feedback, task analysis, and TOP
language development.

9.1 End-user run-time feedback

9.1.1 Unified hints framework

The most obvious next step would be to develop a framework that inte-
grates the two next-step hint approaches. This would provide program-
mers with two different methods of providing hints to end users. By using
RuleTrees, programmers can annotate their software. Doing this manually
gives programmers control over the granularity of the hints. Using sym-
bolic execution, hints can automatically be generated without programmer
interference over every user step. This hybrid approach provides low- and
high-level feedback to end users, making the run-time feedback even more
tailored to their specific needs.

To give an example, imagine a workflow system that models a navy ship.
The tasks model the movements and actions of workers on board. When a
fire breaks out, calculating a hint from the RuleTree might result in next-step
hints like "extinguish fire". Using Assistive T̂OP on the other hand will result
in a next-step hint on the level of individual steps, that in sequence could
look something like this: "Move to room 1", "Pick up extinguisher", "Move
to room 2", "Use extinguisher". This approach is similar to the annotations
used in Haskell tutor Ask-Elle (Gerdes, Heeren, & Jeuring, 2012).

130 Chapter 9. Future work

9.1.2 iTasks integration

Currently, iTasks is the most used TOP implementation. It would therefore
be very interesting to bring the techniques described in this dissertation to
iTasks. For the programmer assisted next-step hints, details on how this can
be done are described in Section 2.6.2. This solution is quite ad-hoc however.
The ruleTree structure could also be integrated in the iTasks language to
allow programmers to integrate the rule-based problem description in the
actual task specification.

The automatic hint generation system would be more challenging to
integrate into iTasks. This method depends on symbolic execution, which
has not been developed for Clean and iTasks. Since Clean support higher
order constructs, it is non-trivial to develop a symbolic execution semantics
for it. However, some research has been done to bring symbolic execution
to higher-order languages, as described in Section 6.7.1.

9.1.3 Hint presentation

Current implementations of both the assisted and automatic systems are
mere proof of concepts implementations. It is possible to calculate next-
step hints, but there is currently no way to display hints in a user friendly
manner. The information calculated by both systems potentially contains
duplicate hints and redundant or irrelevant constraint information.

The same holds for the user defined goals, there is no user friendly way
to set a goal. When implementing either or both of the hint frameworks into
real-world applications, some research has to be done to determine how to
display end-user hints and how to set goals.

9.1.4 Testing the effect of hints

The effectiveness of hints has been shown in other research, especially in the
intelligent tutoring community Kulik and Fletcher (2016); Sharda, Barr, and
MCDonnell (1988). To validate the approaches proposed in this dissertation,
it would be interesting to conduct empirical studies. This would allow us to
determine the effectiveness of next-step hints. TOP research has been ap-
plied and studied in the field at the Royal Netherlands Navy and the Royal
Netherlands Sea Rescue Institution. The existing systems implemented in
TOP at these two institutes would be ideal testing ground for Assistive T̂OP.

9.2. Task analysis 131

9.1.5 Other kinds of feedback

In this dissertation, I focus mainly on providing next-step hints. Of course,
there are many other possible forms of feedback.

In certain cases, it might be that a more general hint is more didactically
effective. For example, when solving a math problem, it could be more
useful to first tell a student what approach she could try, before actually
suggesting a concrete step.

In interactive programs, it might be the case that certain steps are not
available to a user. It would be useful to inform the user, why a step is
unavailable. For example, it could be that she needs to wait on her colleague
to perform some action.

A different angle would be to look at managers’ information. It is pos-
sible to build a manager’s overview with information on the progress of
tasks in an ad-hoc manner, but we are also interested in developing a more
generic way to offer managers feedback.

9.2 Task analysis

9.2.1 Analysis of TopHat programs

The development of a formal Task-oriented Programming semantics opens
the door for many different formal method techniques to be applied this
domain. We are interested in equality of two T̂OP programs, for example
to show that the monad laws hold for our step combinator. This requires a
notion of equality, which in the presence of side effects most certainly needs
some form of coalgebraic input-output conformance.

Another interesting question is investigating temporal properties. Cur-
rently, Symbolic T̂OP only looks at the resulting task value. We would also
like to be able to prove certain properties to hold during the entire execution.
For example, thinking about the flight booking example, it should never
be possible for two people to book the same seat. This property should not
only hold at the end of the program, but also during execution.

Another form of reasoning about programs is static analysis. Klinik,
Jansen, and Plasmeijer (2017) have developed a cost analysis for tasks that
require resources in order to be executed. This analysis was developed for a
simpler task language, and could be applied to the one developed here.

9.2.2 Verification of iTasks behaviour

In the development of T̂OP, we wanted to capture the essence of Task-
oriented programming. By defining a formal semantics, we state clearly

132 Chapter 9. Future work

and unambiguously how each combinator is expected to behave, and how
evaluation reacts to incoming user events.

For the most used TOP system, iTasks, such a formal semantics is not
available. The implementation in Clean is actually the language specifica-
tion. It would be very interesting to use the formal T̂OP semantics to verify
the behaviour of iTasks. If we define a program in iTasks and in T̂OP, do
they behave the same?

iTasks is designed with a different philosophy in mind than T̂OP. In-
stead of choosing the combinator set in such a way that they only perform
one specific task, iTasks employs swiss-army-knife-like combinators that
perform many actions at once.

The step combinator >>* for example, is used to perform two tasks in
sequence, but also allows users to choose from a list of alternatives, enables
or disables those alternatives based on the previous task value, and allows
the task to step to one of the alternatives based on the task value and without
user interaction, all in one combinator.

In T̂OP, we have opted for combinators that only perform one task, and
with the set of combinators, it should be possible to construct every iTask
combinator behaviour. The combinators in T̂OP are modelled after iTasks
combinators, and several examples have been implemented to solidify our
confidence, but proving complete coverage of iTasks behaviour is left as
future work.

A different approach to verify iTasks behaviour would be to model the
task in a separate system, and then during run-time check that the execution
adheres to the model.

9.2.3 Worfklow mining

In the workflow community, some research is done into workflow mining.
The idea is that you take existing data, such as activity logs, and use big-data
techniques to learn, or mine, a workflow. Usually, the form of the learned
model is a workflow-net, or petri-net.

By choosing to learn a petri-net, it is only possible to mine limited
workflows. For example, it is not possible to mine higher order workflows,
since the visual petri-net representation does not support them. I would be
very interested in mining a workflow and target the iTasks or T̂OP form. My
hypothesis is that the learned workflows are smaller, reusable, and more
efficient than the workflows learned using petri-nets.

9.3. TOP language development 133

9.3 TOP language development

9.3.1 Visual TopHat

We would like to develop visualisations for T̂OP language constructs. An
assistive development environment integrating these visualisations and the
presented textual language would aid domain experts to model workflows
in a more accessible manner. A system that visualises iTask programs has
been developed in the past (Stutterheim et al., 2014).

9.3.2 TopHat 2.0

While working with T̂OP, we discovered that certain design decisions were
sub-optimal, and could be improved. More specifically, we intend to publish
a new version of T̂OP in the near future, containing the following improve-
ments.

• Moving the references from the host language layer to the task layer.
This reduces complexity.

• Removing the user step combinator from the language. This combina-
tor is redundant, since it can be created by using the external choice
combinator.

• Adding read-only editors. Many applications require a way to display
information to the user, without allowing the user to modify the
information. In current TOP implementations, this is achieved by
using read-only editors.

• Adding a forever-combinator. Many tasks run indefinitely, T̂OP does
not currently model this behaviour. Think of a coffee machine that
accepts a coin, dispenses coffee and then returns to its initial state.

• A new normalisation mechanism. Instead of comparing states and
tasks to determine if a task has been normalised, the new semantics
will keep track of which references are currently being watched, and
whether or not they have changed.

• Dedicating a special editor to internal values, to make a distinction
between values which are editable by the user, and other values that
can be lifted into the task world, like functions and tasks themselves

135

Curriculum Vitae

16 august 1991 Born in Gorinchem, The Netherlands
2003 - 2011 VWO N&T N&G at GSG Leo Vroman in Gouda
2011 - 2013 Bachelor Computer Science at Utrecht University
2013 - 2015 Master Computing Sience at Utrecht University
2014 - 2015 Internship at Albert Ludwigs University of Freiburg
2015 - 2020 PhD Candidate at Utrecht Univeristy
2017 - 2019 University Council member at Utrecht University
2020 - current Post-Doc researcher at Open University

137

Appendices

139

Appendix A

TopHat type preservation
proofs

140 Appendix A. TopHat type preservation proofs

A.1 Type preservation under evaluation

Proof: We prove Theorem 5.5.1 by induction on a derivation of Γ, Σ ` e : τ:

Case T-CONSTBOOL, T-VAR, T-LOC, T-ABS, T-IF, T-APP, T-REF, T-DEREF,
T-ASSIGN

Type preservation has been proven for these cases by Pierce (2002).

Case T-CONSTINT, T-CONSTSTRING, T-UNIT, T-LISTEMPTY, T-ENTER, T-
XOR

Evaluation does not alter the expression and state, therefore these cases
trivially hold.

Case T-FAIL

This case cannot happen, since there is no evaluation rule for fail.

Case T-FIRST, T-SECOND, T-LISTHEAD, T-LISTTAIL, T-EDIT, T-UPDATE,
T-THEN, T-NEXT

These cases follow immediately from application of the induction hy-
pothesis.

Case T-PAIR, T-CONS, T-OR, T-AND

These cases follow immediately by applying the induction hypothesis
twice.

�

A.2 Type preservation under striding

Before we can prove type preservation under striding, we need to prove
that the value function also preserves types.

A.2.1 Task value preserves types

Lemma A.2.1
For all expressions e and states σ such that Γ, Σ ` e : Task τ and Γ, Σ ` σ, if
V (e, σ) = v, then v : τ.

A.2. Type preservation under striding 141

Proof: We prove Lemma A.2.1 by induction over a derivation of Γ, Σ ` e :
Task τ:

Case T-FAIL

V (, σ) = ⊥. Since this case does not lead to a value, the lemma holds
trivially.

Case T-EDIT

V (� v, σ) = v. By T-Edit, if Γ, Σ ` � v : Task β, then Γ, Σ ` v : β.

Case T-ENTER

V (� β, σ) = ⊥. Since this case does not lead to a value, the lemma holds
trivially.

Case T-UPDATE

V (� l, σ) = σ(l). Given that Γ, Σ ` � l : Task β, we know that Γ, Σ ` l :
Ref β by the premise of T-UPDATE. By definition of a well typed state
and given that Γ, Σ ` σ, we know that Γ, Σ ` σ(l) : Γ(l). Then by T-LOC,
we obtain that Γ(l) = β, and thus Γ, Σ ` σ(l) : β.

Case T-THEN

V (t1 I e2, σ) = ⊥. Since this case does not lead to a value, the lemma
holds trivially.

Case T-NEXT

V (t2 B e2, σ) = ⊥. Since this case does not lead to a value, the lemma
holds trivially.

Case T-AND

Subcase V (t1 Z t2, σ) = 〈v1, v2〉

Given that V (t1, σ) = v1 ∧ V (t2, σ) = v2. By T-AND we have that
Γ, Σ ` t1 Z t2 : Task(τ1 × τ2) and Γ, Σ ` t1 : τ1 and Γ, Σ ` t2 : τ2. By
the induction hypothesis, V (t1, σ) = v1 and V (t2, σ) = v2 preserve
types, and thus Γ, Σ ` v1 : τ1 and Γ, Σ ` v2 : τ2. This gives us that
Γ, Σ ` 〈v1, v2〉 : Task(τ1 × τ2).

Subcase V (t1 Z t2, σ) = ⊥
Given that ¬(V (t1, σ) = v1 ∧ V (t2, s) = v2). Since this case does
not lead to a value, the lemma holds trivially.

Case T-OR

Subcase V (t1 � t2, σ) = v1

142 Appendix A. TopHat type preservation proofs

Given that V (t1, σ) = v1. By T-OR we have that Γ, Σ ` t1 � t2 :
Task τ, and Γ, Σ ` t1 : Task τ and Γ, Σ ` t2 : Task τ. By the induction
hypothesis, we have that Γ, Σ ` v1 : τ.

Subcase V (t1 � t2, σ) = v2

Given that V (t1, σ) = ⊥ ∧ V (t2, σ) = v2. By T-OR we have that
Γ, Σ ` t1 � t2 : Task τ, and Γ, Σ ` t1 : Task τ and Γ, Σ ` t2 : Task τ. By
the induction hypothesis, we have that Γ, Σ ` v2 : τ.

Subcase V (t1 � t2, σ) = ⊥
Given that V (t1, σ) = ⊥∧ V (t2, σ) = ⊥. Since this case does not
lead to a value, the lemma holds trivially.

Case T-XOR

V (t1 ♦ t2, σ) = ⊥. Since this case does not lead to a value, the lemma
holds trivially.

�

A.2.2 Striding preserves types

Lemma A.2.2
For all expressions e and states σ such that Γ, Σ ` e : Task τ and Γ, Σ ` σ, if
e, σ 7→ e′, σ′, then Γ, Σ ` e′ : Task τ and Γ, Σ ` σ′.

Proof: We prove Lemma A.2.2 by induction on a derivation of Γ, Σ ` e :
Task τ:

Case T-FAIL, T-EDIT, T-ENTER, T-UPDATE, T-XOR

Since these cases do not alter the expression, the theorem trivially holds.

Case T-AND

Given that Γ, Σ ` t1 Z t2 : Task(τ1 × τ2), by T-AND we have Γ, Σ ` t1 :
Task τ1 and Γ, Σ ` t2 : Task τ2. By the induction hypothesis we have
Γ, Σ ` t′1 : Task τ1 and Γ, Σ ` σ′, and Γ, Σ ` t′2 : Task τ2 and Γ, Σ ` σ′′.
This gives us that Γ, Σ ` t′1 Z t′2 : Task(τ1 × τ2) by T-AND.

Case T-NEXT

Given that Γ, Σ ` t1 B e2 : Task τ, T-THEN gives us that Γ, Σ ` t1 : Task τ1
and Γ, Σ ` e2 : τ1 → Task τ. By the induction hypothesis, we know that
t1, σ 7→ t′1, σ′ preserves types and thus Γ, Σ ` t′1 : Task τ1 and Γ, Σ ` σ′.
Therefore Γ, Σ ` t′1 B e2 : Task τ.

A.2. Type preservation under striding 143

Case T-OR

Subcase S-ORLEFT

Given that Γ, Σ ` t1 � t2 : Task τ, by T-OR we have Γ, Σ ` t1 : Task τ.
By the induction hypothesis, we know that t1, σ 7→ t′1, σ′ preserves
types and thus Γ, Σ ` t′1 : Task τ and Γ, Σ ` σ′.

Subcase S-ORRIGHT

Given that Γ, Σ ` t1 � t2 : Task τ, by T-OR we have Γ, Σ ` t2 : Task τ.
By the induction hypothesis, we know that t2, σ 7→ t′2, σ′ preserves
types and thus Γ, Σ ` t′2 : Task τ and Γ, Σ ` σ′.

Subcase S-ORNONE

Given that Γ, Σ ` t1 � t2 : Task τ, by T-OR we have Γ, Σ ` t1 : Task τ
and Γ, Σ ` t2 : Task τ. By the induction hypothesis, we know that
t1, σ 7→ t′1, σ′ and t2, σ′ 7→ t′2, σ′′ preserve types, and thus Γ, Σ `
t′1 � t′2 : Task τ and Γ, Σ ` σ′′.

Case T-THEN

Subcase S-THENSTAY

Given that Γ, Σ ` t1 I e2 : Task τ, by T-THEN we have Γ, Σ ` t1 :
Task τ1 and Γ, Σ ` e2 : τ1 → Task τ. By the induction hypothesis, we
know that t1, σ 7→ t′1, σ′ preserves types, and thus Γ, Σ ` t′1 I e2 :
Task τ and Γ, Σ ` σ′.

Subcase S-THENFAIL

Given that Γ, Σ ` t1 I e2 : Task τ, by T-THEN we have Γ, Σ ` t1 :
Task τ1 and e2 : τ1 → Task τ. By the induction hypothesis, we know
that t1, σ 7→ t′1, σ′ preserves types, and thus Γ, Σ ` t′1 I e2 : Task τ
and Γ, Σ ` σ′.

Subcase S-THENCONT

Given that Γ, Σ ` t1 I e2 : Task τ, by T-THEN we have Γ, Σ ` t1 :
Task τ1 and Γ, Σ ` e2 : τ1 → Task τ. By the induction hypothesis,
we know that t1, σ 7→ t′1, σ′ preserves types. By Lemma A.2.1, we
know that V (t′1, σ′) = v1 preserves types. By Theorem 5.5.1 we
know that e2v1, σ′ ↓ t2, σ′′ preserves types. Therefore Γ, Σ ` t2 :
Task τ and Γ, Σ ` σ′′.

�

144 Appendix A. TopHat type preservation proofs

A.3 Proof of type preservation under normalisation

Proof: We prove Theorem 5.5.2 by induction on the derivation of e:

Case

N-DONE
e, σ ↓ t, σ′

t, σ′ 7→ t′, σ′′

σ′ = σ′′ ∧ t = t′
e, σ ⇓ t, σ′

Given that Γ, Σ ` e : Task τ and Γ, Σ ` σ, we know that Γ, Σ ` t : Task τ
and Γ, Σ ` σ′ by Theorem 5.5.1.

Case

N-REPEAT
e, σ ↓ t, σ′

t, σ′ 7→ t′, σ′′

σ′ , σ′′ ∨ t , t′

t′, σ′′ ⇓ t′′, σ′′′

e, σ ⇓ t′′, σ′′′

Given that Γ, Σ ` e : Task τ and Γ, Σ ` σ, we know that Γ, Σ ` t : Task τ
and Γ, Σ ` σ′ by Theorem 5.5.1. Then by Lemma A.2.2, we have Γ, Σ `
t′ : Task τ and Γ, Σ ` σ′′. Then by the induction hypothesis, we finally
obtain that Γ, Σ ` t′′ : Task τ and Γ, Σ ` σ′′′.

�

A.4 Proof of type preservation under handling

We require the following Lemma for this proof.

Lemma A.4.1
Given that Γ, Σ ` σ, Σ(l) = τ and Γ, Σ ` v : τ, it holds that Σ ` σ[l 7→ v]

This lemma follows immediately from the definition of a well typed
state.

Proof: We prove Theorem 5.5.3 by induction on a derivation of Γ, Σ ` e :
Task τ:

Case T-FAIL

This case cannot happen.

Case T-EDIT

Given that Γ, Σ ` � v : Task β and Γ, Σ ` σ, the H-CHANGE rule
additionally gives us that v, v′ : β. Therefore by T-EDIT we have that
Γ, Σ ` � v′ : Task β.

A.4. Proof of type preservation under handling 145

Case T-ENTER

Given that Γ, Σ ` � β : Task β and Γ, Σ ` σ, the H-FILL rule additionally
gives us that v : β. Then by T-ENTER we have Γ, Σ ` � v : Task β.

Case T-UPDATE

Γ, Σ ` � l : Task β and Γ, Σ ` σ. This gives us that Σ(l) = β, and
we additionally obtain σ(l), v : β by H-UPDATE. By application of
Lemma A.4.1 this case holds.

Case T-XOR

Subcase H-PICKLEFT

Given that Γ, Σ ` t1 ♦ t2 : Task τ and Γ, Σ ` σ, then by Theorem 5.5.2,
we have Γ, Σ ` t1 : Task τ and Γ, Σ ` σ′.

Subcase H-PICKRIGHT

Given that Γ, Σ ` t1 ♦ t2 : Task τ and Γ, Σ ` σ, then by Theorem 5.5.2,
we have Γ, Σ ` t2 : Task τ and Γ, Σ ` σ′.

Case T-NEXT

Subcase H-NEXT

Given that Γ, Σ ` t1 B e2 : Task τ and Γ, Σ ` σ, then by Lemma A.2.1
and Theorem 5.5.2, we have Γ, Σ ` t2 : Task τ and Γ, Σ ` σ′.

Subcase H-PASSNEXT

Given that Γ, Σ ` t1 B e2 : Task τ and Γ, Σ ` σ, T-NEXT gives us that
Γ, Σ ` t1 : Task τ1 and Γ, Σ ` e2 : τ1 → Task τ. By the induction

hypothesis, we know that t1, σ
i−→ t′1, σ′ also preserves types and

thus Γ, Σ ` t′1 : Task τ1 and Γ, Σ ` σ′. By T-NEXT we now obtain
that Γ, Σ ` t′1 B e2 : Task τ.

Case T-THEN

H-PASSTHEN

Given that Γ, Σ ` t1 I e2 : Task τ and Γ, Σ ` σ, T-THEN gives us that
Γ, Σ ` t1 : Task τ1 and Γ, Σ ` e2 : τ1 → Task τ. By the induction hy-

pothesis, we know that t1, σ
i−→ t′1, σ′ also preserves types and thus

Γ, Σ ` t′1 : Task τ1 and Γ, Σ ` σ′. By T-THEN we now obtain that
Γ, Σ ` t′1 I e2 : Task τ.

Case T-AND

Subcase H-FIRSTAND

146 Appendix A. TopHat type preservation proofs

Given that Γ, Σ ` t1 Z t2 : Task(τ1 × τ2) and Γ, Σ ` σ, T-AND gives
us that Γ, Σ ` t1 : Task τ1 and Γ, Σ ` t2 : Task τ2. By the induction

hypothesis, we know that t1, σ
i−→ t′1, σ′ also preserves types and

thus Γ, Σ ` t′1 : Task τ1 and Γ, Σ ` σ′. Therefore by T-AND we obtain
Γ, Σ ` t′1 Z t2 : Task(τ1 × τ2).

Subcase H-SECONDAND

Given that Γ, Σ ` t1 Z t2 : Task(τ1 × τ2) and Γ, Σ ` σ, T-AND gives
us that Γ, Σ ` t1 : Task τ1 and Γ, Σ ` t2 : Task τ2. By the induction

hypothesis, we know that t2, σ
i−→ t′2, σ′ also preserves types and

thus Γ, Σ ` t′2 : Task τ2 and Γ, Σ ` σ′. Therefore by T-AND we obtain
Γ, Σ ` t1 Z t′2 : Task(τ1 × τ2).

Case T-OR

Subcase H-FIRSTOR

Given that Γ, Σ ` t1 � t2 : Task τ and Γ, Σ ` σ, T-OR gives us that
Γ, Σ ` t1 : Task τ and Γ, Σ ` t2 : Task τ. By the induction hypothesis

we know that t1, σ
i−→ t′1, σ′ also preserves types, and therefore

Γ, Σ ` t′1 : Task τ and Γ, Σ ` σ′. By T-OR we now obtain Γ, Σ `
t′1 � t2 : Task τ.

Subcase H-SECONDOR

Given that Γ, Σ ` t1 � t2 : Task τ and Γ, Σ ` σ, T-OR gives us that
Γ, Σ ` t1 : Task τ and Γ, Σ ` t2 : Task τ. By the induction hypothesis

we know that t2, σ
i−→ t′2, σ′ also preserves types, and therefore

Γ, Σ ` t′2 : Task τ and Γ, Σ ` σ′. By T-OR we now obtain Γ, Σ `
t1 � t′2 : Task τ.

�

147

Appendix B

TopHat progress proof

148 Appendix B. TopHat progress proof

Proof: We prove Theorem 5.5.5 by induction on a derivation of Γ, Σ ` e :
Task τ:

Case T-FAIL

F (, σ) = True, and there is no handling rule that applies to fail.

Case T-EDIT

F (� v, σ) = False, and there exists an input i, namely any value v′ of
type β, that can be handled.

Case T-ENTER

F (� β, σ) = False, and there exists an input i, namely any value v of
type β, that can be handled.

Case T-UPDATE

F (� l, σ) = False, and there exists an input i, namely any value v of
type β, that can be handled.

Case T-THEN

F (t1 I e2, σ) = F (t1, σ). If there exists an i for t1, then this i also applies
to t1 I e2. This case therefore holds by the induction hypothesis.

Case T-NEXT

F (t1 B e2, σ) = F (t1, σ). If there exists an i for t1, then this i also applies
to t1 B e2. This case therefore holds by the induction hypothesis.

Case T-XOR

We normalise the two expressions first, e1, σ ⇓ t1, σ′, e2, σ ⇓ t2, σ′

and we can then be in two situations. One, we can have that F (t1, σ′)
and F (t2, σ′) are both true. If that is so, then by definition, we have
both F (e1 ♦ e2, σ) and no rule of the handling semantics applies, and
therefore there exists no input for this case.

Or we are in the situation where one or both of the sub-expressions
does not fail. In that case, we know that F (e1 ♦ e2, σ) does not hold, and
that at least one of the handling rules applies. Therefore, there must be
an input i, namely L, R or both.

Case T-AND

We can again find ourselves in one of two situations. In the first case,
both sub-expressions fail, F (t1, σ) and F (t2, σ). In that case, we know
that F (t1 Z t2, σ) also fails by definition. By the induction hypothesis,
we know that for both t1 and t2 there is no input that can be handled.

Appendix B. TopHat progress proof 149

Since the only two rules for Z that handle input just pass this input on
to one of the two expressions, we know that indeed no i applies.

In the case that one or both sub-expressions do not fail, then by defi-
nition t1 Z t2 is not failing under σ. Again by the induction hypothesis,
we know that for one or both of the expressions, there exists an i that
can be handled. Then by H-FirstAnd and H-SecondAnd, we know that
we can pass this i, by prefixing it with either F or S.

Case T-OR

We can again find ourselves in one of two situations. In the first case,
both sub-expressions fail, F (t1, σ) and F (t2, σ). In that case, we know
that F (t1 � t2, σ) also fails by definition. By the induction hypothesis,
we know that for both t1 and t2 there is no input that can be handled.
Since the only two rules for � that handle input just pass this input on to
one of the two expressions, we know that indeed no i applies.

In the case that one or both sub-expressions do not fail, then by defi-
nition t1 � t2 is not failing under σ. Again by the induction hypothesis,
we know that for one or both of the expressions, there exists an i that
can be handled. Then by H-FirstOr and H-SecondOr, we know that we
can pass this i, by prefixing it with either F or S.

�

151

Appendix C

Proof of correctness of Inputs
function

152 Appendix C. Proof of correctness of Inputs function

Proof: We prove Theorem 5.5.6 by induction over a derivation of Γ, Σ ` e :
Task τ:

Case T-EDIT

The rule H-CHANGE applies, which gives us that � v, σ
v′−→ � v′, σ

with v, v′ : β. We have by definition of the inputs function that I (� v :
Task β, σ) = {v′ : β}, which includes v′ : β.

Case T-ENTER

The rule H-FILL applies, which gives us that � β, σ
v−→ � v, σ with v : β.

We have by definition of the inputs function that I (� β, σ) = {v : β},
which includes v : β.

Case T-UPDATE

The rule H-UPDATE applies, which gives us that � l, σ
v−→ � l, σ[l 7→ v]

with σ(l), v : β. We have by definition of the inputs function that I (� l :
Task β, σ) = {v : β}, which includes v : β.

Case T-FAIL

No handling rule applies in this case, and we have by definition of the
inputs function that I (, σ) = ∅.

Case T-XOR

Subcase i = L

The rule H-PICKLEFT applies and gives us e1 ♦ e2, σ
L−→ t1, σ′. We

have by definition of the inputs function that I (e1 ♦ e2, σ) = {L |
e1, σ ⇓ t1, σ′ ∧ ¬F (t1, σ′)} ∪ {R | e2, σ ⇓ t2, σ′ ∧ ¬F (t2, σ′)}.
From the premise of H-PICKLEFT we can conclude that the condi-
tions e1, σ ⇓ t1, σ′ ∧ ¬F (t1, σ′) hold, so we obtain L.

Subcase i = R
The rule H-PICKRIGHT applies and gives us e1 ♦ e2, σ

R−→ t2, σ′.
We have by definition of the inputs function that I (e1 ♦ e2, σ) =
{L | e1, σ ⇓ t1, σ′ ∧¬F (t1, σ′)} ∪ {R | e2, σ ⇓ t2, σ′ ∧¬F (t2, σ′)}.
From the premise of H-PICKRIGHT we can conclude that the condi-
tions e2, σ ⇓ t2, σ′ ∧ ¬F (t2, σ′) hold, so we obtain R.

Case T-NEXT

Subcase i = C

The rule H-NEXT applies, which gives us that t1 B e2, σ
C−→ t2, σ′.

We have by definition of the inputs function that I (t1 B e2, σ) =

Appendix C. Proof of correctness of Inputs function 153

I (t1, σ) ∪ {C | V (t1, σ) = v1 ∧ e2 v1, σ ⇓ t2, σ′ ∧ ¬F (t2, σ′)}.
From the premise of H-NEXT we can conclude that the conditions
V (t1, s) = v1 ∧ ¬F (e2v1, s 7→) hold, and therefore C is contained
in the inputs.

Subcase i , C

The rule H-PASSNEXT applies and gives us t1 B e2, σ
i−→ t′1 B e2, σ′.

We have by definition of the inputs function that I (t1 B e2, s) =
I (t1, σ) ∪ {C | V (t1, σ) = v1 ∧ e2 v1, σ ⇓ t2, σ′ ∧ ¬F (t2, σ′)}.
By the induction hypothesis, we have that i ∈ I (t1, s), and by
definition of I , i is therefore also included in this case.

Case T-THEN

The rule H-PASSTHEN applies and gives us that t1 I e2, σ
i−→ t′1 I e2, σ′.

We have by definition of the inputs function that I (t1 I e2, s) = I (t1, σ).
By the induction hypothesis, we have that i ∈ I (t1, s), and by definition
of I , i is therefore also included in this case.

Case T-AND

Subcase i = F i

The rule H-FIRSTAND applies and gives us t1 Z t2, σ
F i−→ t′1 Z t2, σ′.

We have by definition of the inputs function that I (t1 Z t2, s) =
{F i | i ∈ I (t1, s)} ∪ {S i | i ∈ I (t2, σ)}. By the induction hypothe-
sis, we have that i ∈ I (t1, σ), and by definition of I , F i is therefore
also included in this case.

Subcase i = S i
The rule H-SECONDAND applies and we therefore obtain that

t1 Z t2, σ
S i−→ t1 Z t′2, σ′. We have by definition of the inputs func-

tion that I (t1 Z t2) = {F i | i ∈ I (t1, σ)} ∪ {S i | i ∈ I (t2, σ)}.
By the induction hypothesis, we have that i ∈ I (t2, σ), and by
definition of I , S i is therefore also included in this case.

Case T-OR

Subcase i = F i

The rule H-FIRSTOR applies and gives us t1 � t2, σ
F i−→ t′1 � t2, σ′. We

have by definition of the inputs function that I (t1 � t2, σ) = {F i |
i ∈ I (t1, σ)} ∪ {S i | i ∈ I (t2, σ)}. By the induction hypothesis,
we have that i ∈ I (t1, σ), and by definition of I , F i is therefore
also included in this case.

154 Appendix C. Proof of correctness of Inputs function

Subcase i = S i
The rule H-FIRSTOR applies and gives us t1 � t2, σ

S i−→ t1 � t′2, σ′. We
have by definition of the inputs function that I (t1 � t2, σ) = {F i |
i ∈ I (t1, σ)} ∪ {S i | i ∈ I (t2, σ)}. By the induction hypothesis,
we have that i ∈ I (t2, σ), and by definition of I , S i is therefore
also included in this case.

�

155

Appendix D

Symbolic TopHat soundness
and completeness

156 Appendix D. Symbolic TopHat soundness and completeness

D.1 Soundness proofs

D.1.1 Proof of soundness of symbolic evaluation semantics

Proof: We prove Lemma 6.5.5 by induction over the derivation of the
symbolic evaluation e, σ

{

ẽ, σ̃, φ.

Case SE-VALUE

Since this case does not generate constraints, any M will do. Since neither
the state, nor the expression is altered by the evaluation rule E-VALUE,
this case holds trivially.

Case SE-FAIL

Since this case does not generate constraints, any M will do. Since neither
the state, nor the expression is altered by the evaluation rule E-FAIL,
this case holds trivially.

Case SE-PAIR

For all mappings M such that M(φ1 ∧ φ2),we need to demonstrate that
〈e1, e2〉, σ ↓ 〈v1, v2〉, σ′′ with M〈ṽ1, ṽ2〉 ≡ 〈v1, v2〉 and Mσ̃′′ ≡ σ′′.

From the induction hypothesis, we obtain the following.
∀M1.ẽ1, σ̃

{

ṽ1, σ̃′, φ1 ∧M1φ1 ⇒ e1, σ ↓ v1, σ′ ∧M1ṽ1 ≡ v1 ∧M1σ̃′ ≡
σ′ and
∀M2.M2φ2 ⇒ e2, σ′ ↓ v2, σ′′ ∧M2ṽ2 ≡ v2 ∧M2σ̃′′ ≡ σ′′.

Note that we have omitted from the second application of the induc-
tion hypothesis, the requirement that the symbolic step exists. The fact
that this step exists is obtained from SE-PAIR and omitted to increase
readability of this and any following proofs.

Since M satisfies both φ1 and φ2, we obtain from E-PAIR and the
induction steps above that 〈e1, e2〉, σ ↓ 〈v1, v2〉, σ′′, M〈ṽ1, ṽ2〉 ≡ 〈v1, v2〉
and Mσ̃′′ ≡ σ′′.

Case SE-FIRST

For all mappings M such that Mφ, we need to show that fst e, σ ↓ v1, σ′

with Mṽ1 ≡ v1 and Mσ̃′ ≡ σ′.
From the induction hypothesis, we obtain the following.

∀M1.M1φ⇒ e, σ ↓ 〈v1, v2〉, σ′ ∧M1〈ṽ1, ṽ2〉 ≡ 〈v1, v2〉 ∧M1σ̃′ ≡ σ′

Since M satisfies φ, we obtain from E-FIRST and the induction step
above that fst e, σ ↓ v1, σ′ with Mṽ1 ≡ v1s and Mσ̃′ ≡ σ′.

Case SE-SECOND

For all mappings M such that Mφ, we need to show that snd e, σ ↓ v2, σ′

with Mṽ2 ≡ v2 and Mσ̃′ ≡ σ′.

D.1. Soundness proofs 157

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ e, σ ↓ 〈v1, v2〉, σ′ ∧M1〈ṽ1, ṽ2〉 ≡ 〈v1, v2〉 ∧M1σ̃′ ≡ σ′

Since M satisfies φ, we obtain from E-SECOND and the induction
step above that snd e, σ ↓ v2, σ′ with Mṽ2 ≡ v2 and Mσ̃′ ≡ σ′.

Case SE-CONS

For all mappings M such that Mφ, we need to demonstrate that e1 ::
e2, σ ↓ v1 :: v2, σ′′ with Mṽ1 :: ṽ2 ≡ v1 :: v2 and Mσ̃′′ ≡ σ′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ e1, σ ↓ v1, σ′ ∧M1ṽ1 ≡ v1 ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ e2, σ′ ↓ v2, σ′′ ∧M2ṽ2 ≡ v2 ∧M2σ̃′′ ≡ σ′′

Since M satisfies both φ1 and φ2, we obtain from E-CONS and the
induction steps above that e1 :: e2, σ ↓ v1 :: v2, σ′′ with M(ṽ1 :: ṽ2) ≡
v1 :: v2 and Mσ̃′′ ≡ σ′′.

Case SE-HEAD

For all mappings M such that Mφ, we need to show that head e, σ ↓
v1, σ′ with Mṽ1 ≡ v1 and Mσ̃′ ≡ σ′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ e, σ ↓ v1 :: v2, σ′ ∧M1(ṽ1 :: ṽ2) ≡ v1 :: v2 ∧M1σ̃′ ≡ σ′

Since M satisfies φ, we obtain from E-HEAD and the induction step
above that head e, σ ↓ v1, σ′ with Mṽ1 ≡ v1 and Mσ̃′ ≡ σ′.

Case SE-TAIL

For all mappings M such that Mφ, we need to show that tail e, σ ↓ v2, σ′

with Mṽ2 ≡ v2 and Mσ̃′ ≡ σ′.
From the induction hypothesis, we obtain the following.

∀M1.M1φ⇒ e, σ ↓ v1 :: v2, σ′ ∧M1(ṽ1 :: ṽ2) ≡ v1 :: v2 ∧M1σ̃′ ≡ σ′

Since M satisfies φ, we obtain from E-TAIL and the induction step
above that tail e, σ ↓ v2, σ′ with Mṽ2 ≡ v2 and Mσ̃′ ≡ σ′.

Case SE-APP

For all mappings M such that M(φ1 ∧ φ2 ∧ φ3), we need to demonstrate
that e1e2, σ ↓ v1, σ′′′ with Mṽ1 ≡ v1 and Mσ̃′′′ ≡ σ′′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ e1, σ ↓ λx : τ.e′1, σ′ ∧M1λx : τ.ẽ′1 ≡ λx : τ.e′1 ∧M1σ̃′ ≡ σ′

and ∀M2.M2φ2 ⇒ e2, σ′ ↓ v2, σ′′ ∧M2ṽ2 ≡ v2 ∧M2σ̃′′ ≡ σ′′

and ∀M3.M3φ3 ⇒ e′1[x 7→ v2], σ′′ ↓ v1, σ′′′ ∧M3ṽ1 ≡ v1 ∧M3σ̃′′′ ≡ σ′′′.
Since M satisfies φ1, φ2 and φ3, we obtain from E-APP and the induc-

tion steps above that e1e2, σ ↓ v1, σ′′′ with Mṽ1 ≡ v1 and Mσ̃′′′ ≡ σ′′′.

158 Appendix D. Symbolic TopHat soundness and completeness

Case SE-IF

For all mappings M such that M(φ1 ∧ φ2 ∧ ṽ1), we need to demonstrate
that if e1 then e2 else e3, σ ↓ v2, σ′′ with Mṽ2 = v2 and Mσ̃′′ = σ′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ e1, σ ↓ v1, σ′ ∧M1ṽ1 ≡ v1 ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ e2, σ′ ↓ v2, σ′′ ∧M2ṽ2 ≡ v2 ∧M2σ̃′′ ≡ σ′′.

Since M satisfies φ1, φ2 and ṽ1, we know that v1 = True.
From E-IFTRUE and the induction steps above, we obtain that
if e1 then e2 else e3, σ ↓ v2, σ′′ with Mṽ2 = v2 and Mσ̃′′ = σ′′.

For all mappings M such that M(φ1 ∧ φ3 ∧ ¬ṽ1), we need to demon-
strate that if e1 then e2 else e3, σ ↓ v3, σ′′ with Mṽ3 = v3 and Mσ̃′′ = σ′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ e1, σ ↓ v1, σ′ ∧M1ṽ1 ≡ v1 ∧M1σ̃′ ≡ σ′ and
∀M3.M3φ3 ⇒ e3, σ′ ↓ v3, σ′′ ∧M3ṽ3 ≡ v3 ∧M3σ̃′′ ≡ σ′′.

Since M satisfies φ1, φ3 and ¬ṽ1, we know that v1 = False.
From E-IFFALSE and the induction steps above, we obtain that
if e1 then e2 else e3, σ ↓ v3, σ′′ with Mṽ3 = v3 and Mσ̃′′ = σ′′.

Case SE-REF

For all mappings M such that Mφ, we need to demonstrate that
ref e, σ ↓ l, σ′[l 7→ v] with Ml ≡ l and Mσ̃′[l 7→ ṽ] ≡ σ′[l 7→ v].

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ e, σ ↓ v, σ′ ∧M1ṽ ≡ v ∧M1σ̃′ ≡ σ′.

Since M satisfies φ, we obtain from E-REF and the induction steps
above that ref e, σ ↓ l, σ′[l 7→ v].

We assume that the assignment of location references happens in a
deterministic manner, and that we can therefore conclude that exactly
the same l is used in both cases. Since l cannot contain any symbols,
Ml ≡ l holds trivially.

This, together with Mσ̃′ ≡ σ′ obtained from the induction hypothe-
sis, we can conclude that Mσ̃′[l 7→ ṽ] ≡ σ′[l 7→ v].

Case SE-DEREF

For all mappings M such that Mφ, we need to demonstrate that !e, σ ↓
σ′(l), σ′ with Mσ̃′(l) ≡ σ′(l) and Mσ̃′ ≡ σ′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ e, σ ↓ l, σ′ ∧M1l ≡ l ∧M1σ̃′ ≡ σ′.

Since M satisfies φ, we obtain from E-DEREF and the induction step
above that !e, σ ↓ σ′(l), σ′ with Mσ̃′(l) ≡ σ′(l) and Mσ̃′ ≡ σ′.

D.1. Soundness proofs 159

Case SE-ASSIGN

For all mappings M such that M(φ1 ∧ φ2), we need to demonstrate that
e1 := e2, σ ↓ 〈〉, σ′′[l 7→ v2] with M〈〉 ≡ 〈〉, which holds true trivially,
and Mσ̃′′[l 7→ ṽ2] ≡ σ′′[l 7→ v2].

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ e1, σ ↓ l, σ′ ∧M1l ≡ l ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ e2, σ′ ↓ v2, σ′′ ∧M2ṽ2 ≡ v2 ∧M2σ̃′′ ≡ σ′′

Since M satisfies both φ1 and φ2, we obtain from E-ASSIGN and the
induction steps above that e1 := e2, σ ↓ 〈〉, σ′′[l 7→ v2] with Mσ̃′′[l 7→
ṽ2] ≡ σ′′[l 7→ v2].

Case SE-EDIT

For all mappings M such that Mφ, we need to demonstrate that � e, σ ↓
� v, σ′ with M� ṽ ≡ � v and Mσ̃′ ≡ σ′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ e, σ ↓ v, σ′ ∧M1ṽ ≡ v ∧M1σ̃′ ≡ σ′.

Since M satisfies φ, we obtain from E-EDIT and the induction step
above that � e, σ ↓ � v, σ′ with M� ṽ ≡ � v and Mσ̃′ ≡ σ′.

Case SE-UPDATE

For all mappings M such that Mφ, we need to demonstrate that � e, σ ↓
� l, σ′ with M� l ≡ � l and Mσ̃′ ≡ σ′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ e, σ ↓ l, σ′ ∧M1l ≡ l ∧M1σ̃′ ≡ σ′.

Since M satisfies φ, we obtain from E-UPDATE and the induction
step above that � e, σ ↓ � l, σ′ with M� l ≡ � l and Mσ̃′ ≡ σ′.

Case SE-THEN

For all mappings M such that Mφ, we need to demonstrate that
e1 I e2, σ ↓ t1 I e2, σ′ with Mt̃1 I ẽ2 ≡ t1 I e2 and Mσ̃′ ≡ σ′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ e, σ ↓ t1, σ′ ∧M1 t̃1 ≡ t1 ∧M1σ̃′ ≡ σ′.

Since M satisfies φ, we obtain from E-THEN and the induction step
above that e1 I e2, σ ↓ t1 I e2, σ′ with Mt̃1 I ẽ2 ≡ t1 I e2 and Mσ̃′ ≡ σ′.

Case SE-NEXT

For all mappings M such that Mφ, we need to demonstrate that
e1 B e2, σ ↓ t1 B e2, σ′ with Mt̃1 B e2 ≡ t1 B e2 and Mσ̃′ ≡ σ′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ e, σ ↓ t1, σ′ ∧M1 t̃1 ≡ t1 ∧M1σ̃′ ≡ σ′.

Since M satisfies φ, we obtain from E-NEXT and the induction step
above that e1 B e2, σ ↓ t1 B e2, σ′ with Mt̃1 B e2 ≡ t1 B e2 and Mσ̃′ ≡ σ′.

160 Appendix D. Symbolic TopHat soundness and completeness

Case SE-OR

For all mappings M such that M(φ1 ∧ φ2), we need to demonstrate that
e1 � e2, σ ↓ t1 � t2, σ′′ with Mt̃1 � t̃2 ≡ t1 � t2 and Mσ̃′′ ≡ σ′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ e1, σ ↓ t1, σ′ ∧M1 t̃1 ≡ t1 ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ e2, σ′ ↓ t2, σ′′ ∧M2 t̃2 ≡ t2 ∧M2σ̃′′ ≡ σ′′

Since M satisfies both φ1 and φ2, we obtain from E-OR and the
induction steps above that e1 � e2, σ ↓ t1 � t2, σ′′ with Mt̃1 � t̃2 ≡ t1 � t2
and Mσ̃′′ ≡ σ′′.

Case SE-AND

For all mappings M such that M(φ1 ∧ φ2), we need to demonstrate that
e1 Z e2, σ ↓ t1 Z t2, σ′′ with Mt̃1 Z t̃2 ≡ t1 Z t2 and Mσ̃′′ ≡ σ′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ e1, σ ↓ t1, σ′ ∧M1 t̃1 ≡ t1 ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ e2, σ′ ↓ t2, σ′′ ∧M2 t̃2 ≡ t2 ∧M2σ̃′′ ≡ σ′′

Since M satisfies both φ1 and φ2, we obtain from E-AND and the
induction steps above that e1 Z e2, σ ↓ t1 Z t2, σ′′ with Mt̃1 Z t̃2 ≡ t1 Z t2
and Mσ̃′′ ≡ σ′′.

�

D.1.2 Proof of soundness of symbolic striding semantics

Proof: We prove Lemma 6.5.4 by induction over the derivation t, σ 7{
t̃, σ̃, φ.

Case SS-THENSTAY,SS-THENFAIL

For all mappings M such that Mφ we need to demonstrate that
t1 I e2, σ 7→ t′1 I e2, σ′ with Mt̃′1 I e2 ≡ t′1 I e2 and Mσ̃′ ≡ σ′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ t1, σ 7→ t′1, σ′ ∧M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′.

Since M satisfies φ, we obtain from S-THENSTAY and S-THENFAIL

respectively, and the induction step above that t1 I e2, σ 7→ t′1 I e2, σ′

with Mt̃′1 I e2 ≡ t′1 I e2 and Mσ̃′ ≡ σ′.

Case SS-THENCONT

For all mappings M such that Mφ1 ∧Mφ2 we need to demonstrate that
t1 I e2, σ 7→ t2, σ′′ with Mt̃2 ≡ t2 and Mσ̃′′ ≡ σ′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ t1, σ 7→ t′1, σ′ ⇒ M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′.

D.1. Soundness proofs 161

From Lemma 6.5.5 we know that
∀M2.M2φ2 ⇒ e2v1, σ′ ↓ t2, σ′′ and M2 t̃2 ≡ t2 ∧M2σ̃′′ ≡ σ′′.

Since M satisfies both φ1 and φ2, we obtain from S-THENCONT, the
induction step and application of Lemma 6.5.5 above that t1 I e2, σ 7→
t2, σ′′ with Mt̃2 ≡ t2 and Mσ̃′′ ≡ σ′′.

Case SS-ORLEFT

For all mappings M such that Mφ we have to demonstrate that
t1 � t2, σ 7→ t′1, σ′ with Mt̃′1 ≡ t′1 and Mσ̃′ ≡ σ′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ t1, σ 7→ t′1, σ′ and M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′.

Since M satisfies φ, we obtain from S-ORLEFT and the induction step
above that t1 � t2, σ 7→ t′1, σ′ with Mt̃′1 ≡ t′1 and Mσ̃′ ≡ σ′.

Case SS-ORRIGHT

For all mappings M such that M(φ1 ∧ φ2) we need to demonstrate that
t1 � t2, σ 7→ t′2, σ′′ with Mt̃′2 ≡ t′2 and Mσ̃′′ ≡ σ′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ t1, σ 7→ t′1, σ′ ∧M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ t2, σ′ 7→ t′2, σ′′ ∧M2 t̃′2 ≡ t′2 ∧M2σ̃′′ ≡ σ′′.

Since M satisfies both φ1 and φ2, and from the premise we have
that V (t̃′, σ̃′) = ⊥, we obtain from S-ORRIGHT and the induction steps
above that t1 � t2, σ 7→ t′2, σ′′ with Mt̃′2 ≡ t′2 and Mσ̃′′ ≡ σ′′.

Case SS-ORNONE

For all mappings M such that M(φ1 ∧ φ2) we need to demonstrate that
t1 � t2, σ 7→ t′1 � t′2, σ′′ with Mt̃′1 � t̃′2 ≡ t′1 � t′2 and Mσ̃′′ ≡ σ′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ t1, σ 7→ t′1, σ′ ∧M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ t2, σ′ 7→ t′2, σ′′ ∧M2 t̃′2 ≡ t′2 ∧M2σ̃′′ ≡ σ′′.

Since M satisfies both φ1 and φ2, we obtain from S-ORNONE and the
induction steps above that t1 � t2, σ 7→ t′1 � t′2, σ′′ with Mt̃′1 � t̃′2 ≡ t′1 � t′2
and Mσ̃′′ ≡ σ′′.

Case SS-EDIT

For all mappings M, we need to demonstrate that � v, σ 7→ � v, σ with
M� v ≡ � v and Mσ ≡ σ. This follows trivially from S-EDIT.

Case SS-FILL

For all mappings M, we need to demonstrate that � β, σ 7→ � β, σ with
M� β ≡ � β and Mσ ≡ σ. This follows trivially from S-FILL.

162 Appendix D. Symbolic TopHat soundness and completeness

Case SS-UPDATE

For all mappings M, we need to demonstrate that � l, σ 7→ � l, σ with
M� l ≡ � l and Mσ ≡ σ. This follows trivially from S-UPDATE.

Case SS-FAIL

For all mappings M, we need to demonstrate that , σ 7→ , σ with
M ≡ and Mσ ≡ σ. This follows trivially from S-FAIL.

Case SS-XOR

For all mappings M, we need to demonstrate that e1 ♦ e2, σ 7→ e1 ♦ e2, σ
with Me1 ♦ e2 ≡ e1 ♦ e2 and Mσ̃ ≡ σ. This follows trivially from S-XOR.

Case SS-NEXT

For all mappings M such that Mφ, we need to demonstrate that
t1 B e2, σ 7→ t′1 B e2, σ′ with Mt̃′1 B e2 ≡ t′1 B e2 and Mσ̃′ ≡ σ′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ⇒ t1, σ 7→ t′1, σ′ ∧M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′.

Since M satisfies φ, we obtain from S-NEXT and the induction step
above that t1 B e2, σ 7→ t′1 B e2, σ′ with Mt̃′1 B e2 ≡ t′1 B e2 and Mσ̃′ ≡ σ′.

Case SS-AND

For all mappings M such that M(φ1 ∧ φ2) we need to demonstrate that
t1 Z t2, σ 7→ t′1 Z t′2, σ′′ with Mt̃′1 Z t̃′2 ≡ t′1 Z t′2 and Mσ̃′′ ≡ σ′′.

From the induction hypothesis, we obtain the following.
∀M1.M1φ1 ⇒ t1, σ 7→ t′1, σ′ and M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ t2, σ′ 7→ t′2, σ′′ and M2 t̃′2 ≡ t′2 ∧M2σ̃′′ ≡ σ′′.

Since M satisfies both φ1 and φ2, we obtain from S-AND and the
induction steps above that t1 Z t2, σ 7→ t′1 Z t′2, σ′′ with Mt̃′1 Z t̃′2 ≡
t′1 Z t′2 and Mσ̃′′ ≡ σ′′.

�

D.1.3 Proof of soundness of symbolic normalisation semantics

Proof: We prove Lemma 6.5.3 by induction over the derivation e, σ

{ {

t̃, σ̃, φ.
The base case is when the SN-Done rule applies. Provided that M(φ1 ∧

φ2), we need to demonstrate that e, σ ⇓ t, σ′ with Mt̃ ≡ t and Mσ̃′ ≡ σ′.
By Lemma 6.5.5 and 6.5.4, we know that

∀M1.M1φ1 ⇒ e, σ ↓ t, σ′ ∧M1 t̃ ≡ t ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ t, σ′ 7→ t′, σ′′ ∧M2 t̃′ ≡ t′ ∧M2σ̃′′ ≡ σ′′.

Since M satisfies both φ1 and φ2, we have e, σ ⇓ t, σ′ with Mσ̃′ ≡ σ′.

D.1. Soundness proofs 163

The induction step is when SN-REPEAT applies. In this case, for all
mappings M such that M(φ1 ∧ φ2 ∧ φ3), we need to demonstrate that e, σ ⇓
t′′, σ′′′ with Mt̃′′ ≡ t′′ and Mσ̃′′′ ≡ σ′′′.

Again by Lemma 6.5.5 and 6.5.4, we know that
∀M1.M1φ1 ⇒ e, σ ↓ t, σ′ ∧M1 t̃ ≡ t ∧M1σ̃′ ≡ σ′ and
∀M2.M2φ2 ⇒ t, σ′ 7→ t′, σ′′ ∧M2 t̃′ ≡ t′ ∧M2σ̃′′ ≡ σ′′.
Furthermore, we know by applying the induction hypothesis that
∀M3.M3φ3 ⇒ t′, σ′′ ⇓ t′′, σ′′′ ∧M3 t̃′′ ≡ t′′ ∧M3σ̃′′′ ≡ σ′′′.

Since M satisfies φ1, φ2 and φ3, we obtain from N-REPEAT, the appli-
cation of lemmas and the induction step above that e, σ ⇓ t′′, σ′′′ with
Mt̃′′ ≡ t′′ and Mσ̃′′′ ≡ σ′′′. �

D.1.4 Proof of soundness of symbolic handling semantics

Proof: We prove Lemma 6.5.2 by induction over the derivation t, σ {
t̃, σ̃, ı̃, φ.

Case SH-CHANGE

For all mappings M, we need to demonstrate that � v, σ
Ms−→ �Ms, σ

with M� s ≡ �Ms and Mσ ≡ σ.
This follows trivially from H-CHANGE.

Case SH-FILL

For all mappings M, we need to demonstrate that � β, σ
Ms−→ �Ms, σ

with M� s ≡ �Ms and Mσ ≡ σ.
This follows trivially from H-FILL.

Case SH-UPDATE

For all mappings M, we need to demonstrate that

� l, σ
Ms−→ � l, σ[l 7→ Ms] with M� l ≡ � l and Mσ[l 7→ s] ≡ σ[l 7→

Ms].
� l, σ

Ms−→ � l, σ[l 7→ Ms] follows trivially from H-UPDATE. M� l ≡
� l follows trivially, since locations cannot contain symbols. Mσ[l 7→
s] ≡ σ[l 7→ Ms] follows trivially.

Case SH-NEXT

For all mappings M such that Mφ1, we need to demonstrate that

t1 B e2, σ
Mı̃−→ t′1 B e2, σ′ with Mt̃′1 B e2 ≡ t′1 B e2 and Mσ̃′ ≡ σ′.

By the induction hypothesis we obtain the following.

∀M1.M1φ1 ⇒ t1, σ
M1 ı̃−−→ t′1, σ′ ∧M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′

164 Appendix D. Symbolic TopHat soundness and completeness

Since M satisfies φ1, we obtain from H-PASSNEXT and the induction step

above that t1 B e2, σ
Mı̃−→ t′1 B e2, σ′ with Mt̃′1 B e2 ≡ t′1 B e2 and Mσ̃′ ≡ σ′.

For all mappings M such that Mφ2, we need to demonstrate that

t1 B e2, σ
C−→ t2, σ′ with Mt̃2 ≡ t2 and Mσ̃′ ≡ σ′.

From Lemma 6.5.3 we obtain that ∀M1.M1φ⇒ e2v1, σ ⇓ t2, σ′ ∧Mt̃2 ≡
t2 ∧Mσ̃′ ≡ σ′.

This together with H-NEXT gives us exactly what we need to prove this
case.

Case SH-PASSNEXT

For all mappings M such that Mφ, we need to demonstrate that

t1 B e2, σ
Mı̃−→ t′1 B e2, σ′ with Mt̃′1 B e2 ≡ t′1 B e2 and Mσ̃′ ≡ σ′.

By the induction hypothesis we obtain the following.

∀M1.M1φ1 ⇒ t1, σ
M1 ı̃−−→ t′1, σ′ ∧M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′

Since M satisfies φ, we obtain from H-PASSNEXT and the induction

step above that t1 B e2, σ
Mı̃−→ t′1 B e2, σ′ with Mt̃′1 B e2 ≡ t′1 B e2 and

Mσ̃′ ≡ σ′.

Case SH-PASSNEXTFAIL

For all mappings M such that Mφ, we need to demonstrate that

t1 B e2, σ
Mı̃−→ t′1 B e2, σ′ with Mt̃′1 B e2 ≡ t′1 B e2 and Mσ̃′ ≡ σ′.

By the induction hypothesis we obtain the following.

∀M1.M1φ1 ⇒ t1, σ
M1 ı̃−−→ t′1, σ′ ∧M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′.

Since M satisfies φ and from the premise of SH-PASSNEXTFAIL we
have F (t̃2, σ̃′′), we obtain from H-PASSNEXTFAIL and the induction

step above that t1 B e2, σ
Mı̃−→ t′1 B e2, σ′ with Mt̃′1 B e2 ≡ t′1 B e2 and

Mσ̃′ ≡ σ′.

Case SH-PASSTHEN

For all mappings M such that Mφ, we need to demonstrate that

t1 I e2, σ
Mı̃−→ t′1 I e2, σ′ with Mt̃′1 I e2 ≡ t′1 I e2 and Mσ̃′ ≡ σ′.

By the induction hypothesis we obtain the following.

∀M1.M1φ1 ⇒ t1, σ
M1 ı̃−−→ t′1, σ′ ∧M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′

Since M satisfies φ, we obtain from H-PASSTHEN and the induction

step above that t1 I e2, σ
Mı̃−→ t′1 I e2, σ′ with Mt̃′1 I e2 ≡ t′1 I e2 and

Mσ̃′ ≡ σ′.

D.1. Soundness proofs 165

Case SH-PICK

We have that Mφ1 and/or Mφ2. In the first case, the proof is identical
to the SH-PickLeft rule. In the second case, the proof is identical to the
SH-PickRight rule.

Case SH-PICKLEFT

For all mappings M such that Mφ1, we need to demonstrate that

e1 ♦ e2, σ
L−→ t1, σ′ with Mt̃1 ≡ t1 and Mσ̃′ ≡ σ′.

From Lemma 6.5.3 we obtain that ∀M1.M1φ⇒ e1, σ ⇓ t1, σ′ ∧Mt̃1 ≡
t1 ∧Mσ̃′ ≡ σ′.

Since M satisfies φ1, we obtain from H-PICKLEFT and the application

of Lemma 6.5.3 above that e1 ♦ e2, σ
L−→ t1, σ′ with Mt̃1 ≡ t1 and Mσ̃′ ≡

σ′.

Case SH-PICKRIGHT

For all mappings M such that Mφ2, we need to demonstrate that

e1 ♦ e2, σ
R−→ t2, σ′ with Mt̃2 ≡ t2 and Mσ̃2 ≡ σ′.

From Lemma 6.5.3 we obtain that ∀M1.M1φ⇒ e2, σ ⇓ t2, σ′ ∧Mt̃2 ≡
t2 ∧Mσ̃′ ≡ σ′.

Since M satisfies φ2, we obtain from H-PICKRIGHT and the appli-

cation of Lemma 6.5.3 above that e1 ♦ e2, σ
R−→ t2, σ′ with Mt̃2 ≡ t2 and

Mσ̃2 ≡ σ′.

Case SH-AND

For all mappings M such that Mφ1, we need to demonstrate that

t1 Z t2, σ
M F ı̃−−→ t′1 Z t2, σ′ with Mt̃′1 Z t2 ≡ t′1 Z t2 and Mσ̃′ ≡ σ′.

By the induction hypothesis we obtain the following.

∀M1.M1φ1 ⇒ t1, σ
M1 ı̃−−→ t′1, σ′ ∧M1 t̃′1 ≡ t′1 ∧M1σ̃′ ≡ σ′.

Since M satisfies φ1, we obtain from H-FIRSTAND and the induction

step above that t1 Z t2, σ
M F ı̃−−→ t′1 Z t2, σ′ with Mt̃′1 Z t2 ≡ t′1 Z t2 and

Mσ̃′ ≡ σ′.
For all mappings M such that Mφ2, we need to demonstrate that

t1 Z t2, σ
M S ı̃−−→ t1 Z t′2, σ′ with Mt1 Z t̃′2 ≡ t1 Z t′2 and Mσ̃′ ≡ σ′.

By the induction hypothesis we obtain the following.

∀M1.M1φ1 ⇒ t2, σ̃
M1 ı̃−−→ t′2, σ′ ∧M1 t̃′2 ≡ t′2 ∧M1σ̃′ ≡ σ′

Since M satisfies φ2, we obtain from H-SECONDAND and the induc-

tion step above that t1 Z t2, σ
M S ı̃−−→ t1 Z t′2, σ′ with Mt1 Z t̃′2 ≡ t1 Z t′2

and Mσ̃′ ≡ σ′.

166 Appendix D. Symbolic TopHat soundness and completeness

Case SH-OR

This case is proven in the same way as SH-AND.
�

D.1.5 Proof of soundness of symbolic interacting semantics

Proof: We prove Lemma 6.5.1 by induction on t̃, σ̃ {{ t̃′, σ̃′, ı̃, φ. There is
only one rule that applies, namely SI-HANDLE.

Provided that M(φ1 ∧ φ2), we need to demonstrate that t, σ
Mı̃
=⇒ t′′, σ′′

with Mt̃′′ ≡ t′′ and Mσ̃′′ ≡ σ′′.
Lemma 6.5.2 and Lemma 6.5.3 respectively give us that

∀M1.M1φ1 ⇒ t, σ
M1 ı̃−−→ t′, σ′ ∧M1 t̃′ ≡ t′ ∧M1σ̃′ ≡ σ′ and

∀M2.M2φ2 ⇒ t′, σ′ ⇓ t′′, σ′′ ∧M2 t̃′′ ≡ t′′ ∧M2σ̃′′ ≡ σ′′.
Since M satisfies both φ1 and φ2, we obtain exactly what we need to

prove, namely t, σ
ı̃
=⇒ t′′, σ′′ Mt̃′′ ≡ t′′ and Mσ̃′′ ≡ σ′′.

�

D.2. Completeness proofs 167

D.2 Completeness proofs

D.2.1 Proof of completeness of the symbolic handling semantics

Proof: We prove Lemma 6.5.8 by induction over the derivation t, σ
i−→

t′, σ′.

Case H-CHANGE

By the SH-Change rule, we have � v, σ { � s, σ̃, s, True, and s ∼ v′

holds by definition of input simulation.

Case H-FILL

By the SH-Fill rule, we have � β, σ { � s, σ̃, s, True, and s ∼ v holds by
definition of input simulation.

Case H-UPDATE

By the SH-Update rule, we have � l, σ { � l, σ̃[l 7→ s], s, True, and
s ∼ v holds by definition of input simulation.

Case H-NEXT

By the SH-Next rule, we have t1 B e2, σ { t̃′1 B e2, σ̃1, ı̃, φ1 ∪ t2, σ̃2, C, φ2,
and C ∼ C holds by definition of input simulation.

Case H-PASSNEXT

By application of the induction hypothesis, we obtain the following.

For all t1, σ, i such that t1, σ
i−→ t′1, σ′ there exists an ı̃ ∼ i such that

t1, σ { t̃1, σ̃, ı̃, φ. From this we can conclude that there exists a symbolic
execution t1 B e2, σ { t̃1 B e2, σ̃, ı̃, φ, and that ı̃ ∼ i.

Case H-PASSTHEN

By application of the induction hypothesis, we obtain the following.

For all t1, σ, i such that t1, σ
i−→ t′1, σ′ there exists an ı̃ ∼ i such that

t1, σ { t̃1, σ̃, ı̃, φ. From this we can conclude that there exists a symbolic
execution t1 I e2, σ { t̃1 I e2, σ̃, ı̃, φ, and ı̃ ∼ i.

Case H-PICKLEFT

Lemma 6.5.9 gives us the following.
There exists a symbolic execution e1, σ

{ {

t̃1, σ̃, φ1.
There exists a symbolic execution e2, σ̃

{ {

t̃2, σ̃′, φ2.

168 Appendix D. Symbolic TopHat soundness and completeness

We can now conclude that a symbolic execution exists. Either by the
SH-PICKLEFT rule, in case F (t̃2, σ̃′), or by the SH-PICK rule in case
¬F (t̃2, σ̃′). We have that L ∼ L holds by definition.

Case H-PICKRIGHT

Lemma 6.5.9 gives us the following.
There exists a symbolic execution e1, σ

{ {

t1, σ̃, φ1.
There exists a symbolic execution e2, σ̃

{ {

t2, σ̃′, φ2.
We can now conclude that a symbolic execution exists. Either by the

SH-PICKRIGHT rule, in case F (t̃1, σ̃), or by the SH-PICK rule in case
¬F (t1, σ̃).

We have that R ∼ R holds by definition.

Case H-FIRSTOR

By application of the induction hypothesis, we obtain the following.

For all t1, σ, i such that t1, σ
i−→ t′1, σ′ there exists an ı̃ ∼ i such that

t1, σ { t̃1, σ̃, ı̃, φ.
From SH-OR, and the conclusion of the induction hypothesis, we

can conclude that there exists a symbolic input, namely F ı̃, such that
t1 � t2, σ { t̃′1 � t2, σ̃, F ı̃, φ. From ı̃ ∼ i and by definition of input simula-
tion, we can conclude that F ı̃ ∼ F i.

Case H-SECONDOR

By application of the induction hypothesis, we obtain the following.

For all t2, σ, i such that t2, σ
i−→ t′2, σ′ there exists an ı̃ ∼ i such that

t2, σ { t̃2, σ̃, ı̃, φ.
From SH-OR, and the induction step above, we can conclude that

there exists a symbolic input such that t1 � t2, σ { t̃1 � t′2, σ̃′, S ı̃, φ,
namely S ı̃. From ı̃ ∼ i and by definition of input simulation, we can
conclude that S ı̃ ∼ S i.

Case H-FIRSTAND

By application of the induction hypothesis, we obtain the following.

For all t1, σ, i such that t1, σ
i−→ t′1, σ′ there exists an ı̃ ∼ i such that

t1, σ { t̃1, σ̃, ı̃, φ.
From SH-AND, and the conclusion of the induction step above,

we can conclude that there exists a symbolic input, namely F ı̃ such
that t1 Z t2, σ { t̃′1 Z t2, σ̃, F ı̃, φ. From ı̃ ∼ i and by definition of input
simulation, we can conclude that F ı̃ ∼ F i.

D.2. Completeness proofs 169

Case H-SECONDAND

By application of the induction hypothesis, we obtain the following.

For all t2, σ, i such that t2, σ
i−→ t′2, σ′ there exists an ı̃ ∼ i such that

t2, σ { t̃2, σ̃, ı̃, φ.
From SH-AND, and the conclusion of the induction step above,

we can conclude that there exists a symbolic input, namely S ı̃ such
that t1 Z t2, σ { t1 Z t̃2, σ̃, S ı̃, φ. From ı̃ ∼ i and by definition of input
simulation, we can conclude that S ı̃ ∼ S i.

�

D.2.2 Proof of completeness of the symbolic interaction seman-
tics

Proof: The proof of Theorem 6.5.7 consists of one case, since the interacting
semantics consists of one rule, namely
I-HANDLE

t, σ
i−→ t′, σ′ t′, σ′ ⇓ t′′, σ′′

t, σ
i
=⇒ t′′, σ′′

.

By Lemma 6.5.8 we obtain the following.

t, σ
i−→ t′, σ′ ⇒ ∃ı̃.t, σ { t̃, σ̃, ı̃, φ ∧ ı̃ ∼ i

Then by Lemma 6.5.9 we obtain the following.
t′, σ′ ⇓ t′′, σ′′ ⇒ t′, σ′

{ {

t̃′, σ̃′, φ′

From the above, together with the SI-Handle rule, we can conclude that
there exists a symbolic execution t, σ {{ t̃′′, σ̃′′, ı̃, φ ∧ ı̃ ∼ i.

�

171

Appendix E

Assistive TopHat soundness
and completeness

172 Appendix E. Assistive TopHat soundness and completeness

E.1 Completeness proofs

E.1.1 Completeness of Simulate

Proof: The structure of the proof of Lemma 7.4.4 is outlined in Fig. 7.4.

For all tasks t and states σ such that t, σ
I
=⇒∗ v, we have by definition of

I
=⇒∗ that:

t, σ
i1=⇒ t1, σ1

i2=⇒ · · · in=⇒ tn, σn with V (tn, σn) and I = [i1, · · · , in].
We need to show that we have (ṽ, Ĩ, Φ) ∈ (t, σ {{∗ ṽ, Ĩ, Φ), which is

defined as follows.

t, σ {{ t̃1, σ̃1, ı̃1, φ1

t̃1, σ̃1 {{ t̃2, σ̃2, ı̃2, φ2

t̃2, σ̃2 {{ · · ·
· · · {{ t̃n, σ̃n, ı̃n, φn

with V (t̃n, σ̃n) = ṽ and S(φ1 ∧ · · · ∧ φn).
By Lemma 7.4.7, we know that t, σ {{ t̃1, σ̃1, ı̃1, φ1 exists, since t, σ �∅

t, σ, True. This also gives us that ı̃1 ∼ i1 and t1, σ1 �[s1 7→c1] t̃1, σ̃1, φ1 with
SymOf (ı̃1) = s1 and ValOf (i1) = c1.

By repeated application of Lemma 7.4.7, untill we arrive at tn, σn, we can
show that there exists a Ĩ such that t, σ {{∗ ṽ, Ĩ, Φ, namely [ı̃1, · · · , ı̃n].

�

E.1.2 Completeness of interaction

Proof: The proof of Lemma 7.4.7 only consists of one case, since the con-
crete interacting semantics consists of one rule, namely I-HANDLE.

Given that t, σ �M t̃, σ̃, Φ and t, σ
i
=⇒ t′, σ′, Lemma E.1.1 gives us

that there exists a symbolic input ı̃ such that ı̃ ∼ i and (t̃′, σ̃′, ı̃, φ1) in
t̃, σ̃ {{ t̃′, σ̃′, ı̃, φ, with t′, σ′ �[s 7→c]M t̃′, σ̃′, Φ ∧ φ1 with s = SymOf (ı̃) and
c = ValOf (i).

Then by Lemma E.1.2, given that t′, σ′ ⇓ t′′, σ′′, we obtain that S(Φ ∧
φ1) implies that t̃′, σ̃′

{ {

t̃′′, σ̃′′, φ2 with t′′, σ′′ � [s 7→ c]Mt̃′′, σ̃′′, Φ∧ φ1 ∧ φ2.
�

E.1. Completeness proofs 173

E.1.3 Completeness of handling

Lemma E.1.1 (Completeness of handling)
For all concrete tasks t, concrete states σ, concrete inputs i, symbolic tasks t̃,
symbolic states σ̃ path conditions Φ and mappings M, we have that t, σ �M t̃, σ̃, Φ

and t, σ
i−→ t′, σ′ together with t̃, σ̃ { t̃′, σ̃′, ı̃, φ, and for all tuples (t̃′, σ̃′, ı̃, φ)

we have that S(Φ ∧ φ) and ı ∼ i implies t′, σ′ �[s 7→c]M t̃′, σ̃′, Φ ∧ φ where
SymOf (ı̃) = s and ValOf (i) = c.

Proof: We prove Lemma E.1.1 by induction over the derivation t, σ
i−→

t′, σ′.

Case H-CHANGE

Provided that � v, σ �M t̃, σ̃, Φ and � v, σ
v′−→ � v′, σ with v, v′ : β, then

by SH-CHANGE � ṽ, σ̃ { � s, σ̃, s, True. S(Φ ∧ True) = S(Φ), which
follows from the premise. Furthermore we have s ∼ v′ by definition
of input simulation. Then finally � v′, σ �[s 7→v′]M � s, σ̃, Φ since [s 7→
v′]Ms = v′.

Case H-FILL

Provided that � β, σ �M t̃, σ̃, Φ and � β, σ
v−→ � v, σ with v : β then

� β, σ̃ { � s, σ̃, s, True by SH-FILL. S(Φ∧True) = S(Φ), which follows
from the premise. Furthermore we have s ∼ v by definition of input
simulation. Then finally � v, σ �[s 7→v]M � s, σ̃, Φ since [s 7→ v]Ms = v.

Case H-UPDATE

Provided that � l, σ �M t̃, σ̃, Φ and � l, σ
v−→ � l, σ[l 7→ v] with σ(l), v :

β, then � l, σ̃ { � l, σ̃[l 7→ s], s, True by SH-UPDATE. S(Φ ∧ True) =
S(Φ), which follows from the premise. Furthermore we have s ∼ v
by definition of input simulation. Then finally � l, σ[l 7→ v] �[s 7→v]M
� l, σ̃[l 7→ s], Φ since [s 7→ v]Ms = v.

Case H-NEXT

Provided that t1 B e2, σ �M t̃, σ̃, Φ and t1 B e2, σ
C−→ t2, σ′, then by SH-

NEXT we have t̃1 B ẽ2, σ̃ { t̃′1 B ẽ2, σ̃1, ı̃, φ1 ∪ t̃2, σ̃2, C, φ2. The simulation
step results in two sets, from which only the second adheres to the
requirement that the symbolic input should simulate the concrete input.
For this set, t̃2, σ̃′2, C, φ2, we have S(Φ ∧ φ2) implies t2, σ′2 �M t̃2, σ̃′2, Φ ∧
φ2, which follows directly from Lemma E.1.2.

174 Appendix E. Assistive TopHat soundness and completeness

Case H-PASSNEXT

Provided that t1 B e2, σ �M t̃, σ̃, Φ and t1 B e2, σ
i−→ t′1 B e2, σ′, there

are three symbolic rules that apply in this case, namely SH-PASSNEXT,
SH-PASSNEXTFAIL and SH-NEXT.

We are only interested in the runs that produce a symbolic input that
simulates the concrete input i. Whichever rule applies, we deal with
the same premise because of this restriction. This allows us to apply
the induction hypothesis and obtain that S(Φ ∧ φ1) and ı̃ ∼ i implies
t′1, σ′ �[s 7→c]M t̃′1, σ̃′, Φ ∧ φ1 with SymOf (ı̃) = s and ValOf (i) = c. From
this, we can directly conclude that t′1 B e2, σ′ �[s 7→c]M t̃′1 B ẽ2, σ̃′, Φ ∧ φ1.

Case H-PASSTHEN

Provided that t1 I e2, σ �M t̃, σ̃, Φ and t1 I e2, σ
i−→ t′1 I e2, σ′, then

t̃ I ẽ2, σ̃ { t̃′1 I e2, σ̃′, ı̃, φ by SH-PASSTHEN.
By the induction hypothesis, we obtain S(Φ ∧ φ) and ı̃ ∼ i implies

t′1, σ′ �[s 7→c]M t̃′1, σ̃′, Φ ∧ φ with SymOf (ı̃) = s and ValOf (i) = c from
which we can conclude that t′1 I e2, σ′ �[s 7→c]M t̃′1 I ẽ2, σ̃′, Φ ∧ φ.

Case H-PICKLEFT

Provided that e1 ♦ e2, σ �M t̃, σ̃, Φ and e1 ♦ e2, σ
L−→ t1, σ′, then by SH-

PICK we have ẽ1 ♦ ẽ2, σ̃ { t̃1, σ̃1, L, φ1 ∪ t̃2, σ̃2, R, φ2.
By Lemma E.1.2 we obtain S(Φ ∧ φ1) implies t1, σ′ �M t̃1, σ̃′, Φ ∧ φ1

from which we can conclude that t1, σ′ �M t̃1, σ̃′, Φ ∧ φ1.

Case H-PICKRIGHT

Provided that e1 ♦ e2, σ �M t̃, σ̃, Φ and e1 ♦ e2, σ
R−→ t2, σ′,

then ẽ1 ♦ ẽ2, σ̃ { t̃1, σ̃1, L, φ1 ∪ t̃2, σ̃2, R, φ2 by SH-PICK.
By Lemma E.1.2 we obtain S(Φ ∧ φ2) implies t2, σ′ �M t̃2, σ̃′, Φ ∧ φ2

from which we can conclude that t2, σ′ �M t̃2, σ̃′, Φ ∧ φ2.

Case H-FIRSTOR

Provided that t1 � t2, σ �M t̃, σ̃, Φ and t1 � t2, σ
F i−→ t′1 � t2, σ′, then

t̃1 � t̃2, σ̃ { t̃1, σ̃1, F ı̃, φ1 ∪ t̃2, σ̃2, S ı̃, φ2 by SH-OR.
By the induction hypothesis we obtain S(Φ ∧ φ1) implies t′1, σ′ �M

t̃′1, σ̃′, Φ ∧ φ1 from which we can conclude t′1 � t2, σ′ �M t̃′1 � t̃2, σ̃′, Φ ∧
φ1.

Case H-SECONDOR

Provided that t1 � t2, σ �M t̃, σ̃, Φ and t1 � t2, σ
S i−→ t1 � t′2, σ′, then

t̃1 � t̃2, σ̃ { t̃1, σ̃1, F ı̃, φ1 ∪ t̃2, σ̃2, S ı̃, φ2 by SH-OR.

E.1. Completeness proofs 175

By application of the induction hypothesis we obtain S(Φ ∧ φ2)
implies t′2, σ′ �M t̃′2, σ̃′, Φ ∧ φ2 from which we can conclude that
t1 � t′2, σ′ �M t̃1 � t̃′2, σ̃′, Φ ∧ φ2.

Case H-FIRSTAND

Provided that t1 Z t2, σ �M t̃, σ̃, Φ and t1 Z t2, σ
F i−→ t′1 Z t2, σ′, then

t̃1 Z t̃2, σ̃ { t̃′1 Z t̃2, σ̃1, F ı̃1, φ1 ∪ t̃1 Z t̃′2, σ̃2, S ı̃2, φ2 by SH-AND.
By application of the induction hypothesis we obtain S(Φ ∧ φ1)

implies t′1, σ′ �M t̃′1, σ̃′, Φ ∧ φ1 from which we can conclude that
t′1 Z t2, σ′ �M t̃′1 Z t̃2, σ̃′, Φ ∧ φ1.

Case H-SECONDAND

Provided that t1 Z t2, σ �M t̃, σ̃, Φ and t1 Z t2, σ
S i−→ t1 Z t′2, σ′, then

t̃1 Z t̃2, σ̃ { t̃′1 Z t̃2, σ̃1, F ı̃1, φ1 ∪ t̃1 Z t̃′2, σ̃2, S ı̃2, φ2 by SH-AND.
By application of the induction hypothesis we obtain S(Φ ∧ φ2)

implies t′2, σ′ �M t̃′2, σ̃′, Φ ∧ φ2 from which we can conclude that
t1 Z t′2, σ′ �M t̃1 Z t̃′2, σ̃′, Φ ∧ φ2.

�

E.1.4 Completeness of normalisation

Lemma E.1.2 (Completeness of normalisation)
For all concrete expressions e, concrete states σ, symbolic expressions ẽ, symbolic
states σ̃ path conditions Φ and mappings M, if e, σ �M ẽ, σ̃, Φ and e, σ ⇓ t, σ′

then ẽ, σ̃

{ {

t̃, σ̃′, φ and for all tuples (t̃, σ̃′, φ) we have that S(Φ ∧ φ) implies
t, σ′ �M t̃, σ̃′, Φ ∧ φ.

Proof: We prove Lemma E.1.2 by induction over the derivation e, σ ⇓ t, σ.
The base case is when the N-DONE rule applies.
In this case, we obtain from Lemma E.1.4 that ẽ, σ̃

{

t̃, σ̃′, φ with t, σ′ �M
t̃, σ̃′, Φ ∧ φ. Together with SN-DONE this gives us ẽ, σ̃

{ {

t̃, σ̃′, which is
exactly what we need to show.

The only induction step is when N-REPEAT applies. In this case, we
obtain from Lemma E.1.4 that ẽ, σ̃

{

t̃, σ̃′, φ1 with t, σ′ �M t̃, σ̃′, Φ ∧ φ1. Fur-
thermore, by Lemma E.1.3 we obtain that t̃, σ̃′ 7{ t̃′, σ̃′′, φ2 with t′, σ′′ �M
t̃′, σ̃′′, Φ ∧ φ1 ∧ φ2. Then finally, by application of the induction hypothesis
we obtain t̃′, σ̃′′

{ {

t̃′′, σ̃′′′, φ3 with t′′, σ′′′ �M t̃′′, σ̃′′′, Φ ∧ φ1 ∧ φ2 ∧ φ3. The
above, together with the SN-REPEAT rule gives us that: ẽ, σ̃

{ {

t̃′′, σ̃′′′, φ1 ∧
φ2 ∧ φ3 with t′′, σ′′′ �M t̃′′, σ̃′′′, Φ ∧ φ1 ∧ φ2 ∧ φ3. �

176 Appendix E. Assistive TopHat soundness and completeness

E.1.5 Completeness of striding

Lemma E.1.3 (Completeness of striding)
For all concrete tasks t, concrete states σ, symbolic tasks t̃, symbolic states σ̃ path
conditions Φ and mappings M, we have that if t, σ �M t̃, σ̃, Φ and t, σ 7→ t′, σ′,
then t̃, σ̃ 7{ t̃′, σ̃′, φ, and for all tuples (t̃′, σ̃′, φ) we have that S(Φ ∧ φ) implies
t′, σ′ �M t̃′, σ̃′, Φ ∧ φ.

Proof: We prove Lemma E.1.3 by induction over the derivation t, σ 7→
t′, σ′.

Case S-EDIT

Provided that � v, σ �M t̃, σ̃, Φ and � v, σ 7→ � v, σ, we can conclude
that t̃ = � ṽ and then by SS-EDIT, � ṽ, σ̃ 7{ � ṽ, σ̃. Since the expressions
do not change in this case, consistency holds trivially.

Case S-FILL

Provided that � β, σ �M t̃, σ̃, Φ and � β, σ 7→ � β, σ, we can conclude
that t̃ = � β and then by SS-FILL, � β, σ̃ 7{ � β, σ̃. Since the expressions
do not change in this case, consistency holds trivially.

Case S-UPDATE

Provided that � l, σ �M t̃, σ̃, Φ and � l, σ 7→ � l, σ, we can conclude
that t̃ = � l and then by SS-UPDATE, � l, σ̃ 7{ � l, σ̃. Since the expres-
sions do not change in this case, consistency holds trivially.

Case S-FAIL

Provided that , σ �M t̃, σ̃, Φ and , σ 7→ , σ, we can conclude that
t̃ = and then by SS-FAIL, , σ̃ 7{ , σ̃. Since the expressions do not
change in this case, consistency holds trivially.

Case S-XOR

Provided that e1 ♦ e2, σ �M t̃, σ̃, Φ and e1 ♦ e2, σ 7→ e1 ♦ e2, σ, we can
conclude that t̃ = ẽ1 ♦ ẽ2 and then by SS-XOR, ẽ1 ♦ ẽ2, σ̃ 7{ ẽ1 ♦ ẽ2, σ̃.
Since the expressions do not change in this case, consistency holds
trivially.

Case S-THENSTAY,S-THENFAIL

Provided that t1 I e2, σ �M t̃, σ̃, Φ and t1 I e2, σ 7→ t′1 I e2, σ′, then
by the induction hypothesis, we have t̃1, σ̃ 7{ t̃′1, σ̃′, φ and t′1, σ′ �M
t̃′1, σ̃′, Φ ∧ φ. Then by SS-THENSTAY and SS-THENFAIL respectively, we
have t̃1 I ẽ2, σ 7{ t̃′1 I ẽ2, σ′, φ and t′1 I e2, σ′ �M t̃′1 I ẽ2, σ̃′, Φ ∧ φ.

E.1. Completeness proofs 177

Case S-THENCONT

Provided that t1 I e2, σ �M t̃, σ̃, Φ and t1 I e2, σ 7→ t2, σ′′, then by the
induction hypothesis, we have t̃1, σ̃ 7{ t̃′1, σ̃′, φ and t′1, σ′ �M t̃′1, σ̃′, Φ∧
φ1.

From the premise, we have V (t′1, σ′) = v1. This gives us that we also
have V (t̃′1, σ′) = ṽ1. Lemma E.1.4 gives us that ẽ2ṽ1, σ̃′

{

t̃2, σ̃′′, φ2 and
t2, σ′′ �M t̃2, σ̃′′, Φ ∧ φ1 ∧ φ2.

Then by SS-THENCONT, we have t̃1 I ẽ2, σ 7{ t̃2, σ′′, φ1 ∧ φ2 and
t2, σ′′ �M t̃2, σ̃′′, Φ ∧ φ1 ∧ φ2.

Case S-ORLEFT

Provided that t1 � t2, σ �M t̃, σ̃, Φ and t1 � t2, σ 7→ t′1, σ′, then by the
induction hypothesis, we have t̃1, σ̃ 7{ t̃′1, σ̃′, φ and t′1, σ′ �M t̃′1, σ̃′, Φ∧
φ. Then by SS-ORLEFT, we have t̃1 � t̃2, σ 7{ t̃′1, σ′, φ and t′1, σ′ �M
t̃′1, σ̃′, Φ ∧ φ.

Case S-ORRIGHT

Provided that t1 � t2, σ �M t̃, σ̃, Φ and t1 � t2, σ 7→ t′2, σ′′, then by
the induction hypothesis, we have t̃1, σ̃ 7{ t̃′1, σ̃′, φ and t′1, σ′ �M
t̃′1, σ̃′, Φ ∧ φ1. A second application of the induction hypothesis gives
us that t̃2, σ̃′ 7{ t̃′2, σ̃′′, φ2 and t′2, σ′′ �M t̃′2, σ̃′′, Φ ∧ φ1 ∧ φ2. Then
by SS-ORRIGHT, we have t̃1 � t̃2, σ 7{ t̃′2, σ′′, φ1 ∧ φ2 and t′2, σ′′ �M
t̃′2, σ̃′′, Φ ∧ φ1 ∧ φ2.

Case S-ORNONE

Provided that t1 � t2, σ �M t̃, σ̃, Φ and t1 � t2, σ 7→ t′1 � t′2, σ′′, then
by the induction hypothesis, we have t̃1, σ̃ 7{ t̃′1, σ̃′, φ and t′1, σ′ �M
t̃′1, σ̃′, Φ ∧ φ1. A second application of the induction hypothesis gives
us that t̃2, σ̃′ 7{ t̃′2, σ̃′′, φ2 and t′2, σ′′ �M t̃′2, σ̃′′, Φ ∧ φ1 ∧ φ2. Then by
SS-ORNONE, we have t̃1 � t̃2, σ 7{ t̃′1 � t̃′2, σ′′, φ1 ∧ φ2 and t′1 � t′2, σ′′ �M
t̃′1 � t̃′2, σ̃′′, Φ ∧ φ1 ∧ φ2.

Case S-NEXT

Provided that t1 B e2, σ �M t̃, σ̃, Φ and t1 B e2, σ 7→ t′1 B e2, σ′, then
by the induction hypothesis, we have t̃1, σ̃ 7{ t̃′1, σ̃′, φ and t′1, σ′ �M
t̃′1, σ̃′, Φ ∧ φ. Then by SS-NEXT, we have t̃1 B ẽ2, σ 7{ t̃′1 B ẽ2, σ′, φ and
t′1 B e2, σ′ �M t̃′1 B ẽ2, σ̃′, Φ ∧ φ.

Case S-AND

This case is proven in the same way as S-ORNONE.
�

178 Appendix E. Assistive TopHat soundness and completeness

E.1.6 Completeness of evaluate

Lemma E.1.4 (Completeness of evaluate)
For all concrete expressions e, concrete states σ, symbolic expressions ẽ, symbolic
states σ̃ path conditions Φ and mappings M, we have that if e, σ �M ẽ, σ̃, Φ
and e, σ ↓ v, σ′, then ẽ, σ̃

{

ṽ, σ̃′, φ, and for all tuples (ṽ, σ̃′, φ) we have that
S(Φ ∧ φ) implies v, σ′ �M ṽ, σ̃′, Φ ∧ φ.

Proof: We prove Lemma E.1.4 by induction over the derivation e, σ ↓
v, σ′.

Case E-VALUE

Provided that v, σ �M ẽ, σ̃, Φ and v, σ ↓ v, σ, we know that ẽ = ṽ.
By SE-VALUE, we have ṽ, σ̃

{

ṽ, σ̃, True. Since the expressions did not
change, this case holds trivially.

Case E-PAIR

Provided that 〈e1, e2〉, σ �M ẽ, σ̃, Φ and 〈e1, e2〉, σ ↓ 〈v1, v2〉, σ′′, then
by application of the induction hypothesis we obtain ẽ1, σ̃

{

ṽ1, σ̃′, φ1
and v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ1. A second application of the induction
hypothesis gives us ẽ2, σ̃′

{

ṽ2, σ̃′′, φ2 and v2, σ′′ �M ṽ2, σ̃′′, Φ ∧ φ2. By
SE-PAIR, we have 〈ẽ1, ẽ2〉, σ̃

{

〈ṽ1, ṽ2〉, σ̃′′, φ1 ∧ φ2 and 〈v1, v2〉, σ′′ �M
〈ṽ1, ṽ2〉, σ̃′′, Φ ∧ φ1 ∧ φ2.

Case E-FIRST

Provided that fst e, σ �M ẽ, σ̃, Φ and fst e, σ ↓ v1, σ′, then by ap-
plication of the induction hypothesis we obtain ẽ, σ̃

{

〈ṽ1, ṽ2〉, σ̃′, φ
and 〈v1, v2〉, σ′ �M 〈ṽ1, ṽ1〉, σ̃′, Φ ∧ φ. By SE-FIRST, we have fst ẽ, σ̃

{

ṽ1, σ̃′, φ.

Case E-SECOND

Provided that snd e, σ �M ẽ, σ̃, Φ and snd e, σ ↓ v2, σ′, then by appli-
cation of the induction hypothesis we obtain ẽ, σ̃

{

〈ṽ1, ṽ2〉, σ̃′, φ and
〈v1, v2〉, σ′ �M 〈ṽ1, ṽ2〉, σ̃′, Φ ∧ φ.

By SE-SECOND, we have snd e, σ̃

{

ṽ2, σ̃′, φ.

Case E-CONS

Provided that e1 :: e2, σ �M ẽ, σ̃, Φ and e1 :: e2, σ ↓ v1 :: v2, σ′′ then
by application of the induction hypothesis we obtain ẽ1, σ̃

{

ṽ1, σ̃′, φ1
and v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ1. A second application of the induction
hypothesis gives us ẽ2, σ̃′

{

ṽ2, σ̃′′, φ2 and v2, σ′′ �M ṽ2, σ̃′′, Φ ∧ φ2.

E.1. Completeness proofs 179

By SE-CONS, we have ẽ1 :: ẽ2, σ̃

{

ṽ1 :: ṽ2, σ̃′′, φ1 ∧ φ2 and
v1 :: v2, σ′′ �M ṽ1 :: ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2.

Case E-HEAD

Provided that head e, σ �M ẽ, σ̃, Φ and head e, σ ↓ v1, σ′, then by ap-
plication of the induction hypothesis we obtain ẽ, σ̃

{

ṽ1 :: ṽ2, σ̃′, φ
and v1 :: v2, σ′ �M ṽ1 :: ṽ2, σ̃′, Φ ∧ φ. By SE-HEAD, we have head ṽ1 ::
ṽ2, σ̃

{

ṽ1, σ̃′, φ.

Case E-TAIL

Provided that tail e, σ �M ẽ, σ̃, Φ and tail e, σ ↓ v2, σ′, then by appli-
cation of the induction hypothesis we obtain ẽ, σ̃

{

ṽ1 :: ṽ2, σ̃′, φ and
v1 :: v2, σ′ �M ṽ1 :: ṽ2, σ̃′, Φ ∧ φ. By SE-TAIL, we have tail ṽ1 :: ṽ2, σ̃

{

ṽ2, σ̃′, φ.

Case E-APP

Provided that e1e2, σ �M ẽ, σ̃, Φ and e1e2, σ ↓ v1, σ′′′, then by appli-
cation of the induction hypothesis we obtain ẽ1, σ̃

{

λx : τ.ẽ′1, σ̃′, φ1
and λx : τ.e′1, σ′ �M λx : τ.ẽ′1, σ̃′, Φ ∧ φ1. A second application of
the induction hypothesis gives us ẽ2, σ̃′

{

ṽ2, σ̃′′, φ2 and v2, σ′′ �M
ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2.

Then finally by a third application of the induction hypothesis, we
get ẽ′1[x 7→ ṽ2], σ̃′′

{

ṽ1, σ̃′′′, φ3 and v1, σ′′′ �M ṽ1, σ̃′′′, Φ ∧ φ1 ∧ φ2 ∧ φ3.
By SE-APP, we have ẽ1ẽ2, σ̃

{

ṽ1, σ̃′′′, φ1 ∧ φ2 ∧ φ2.

Case E-IFTRUE

Provided that if e1 then e2 else e3, σ �M ẽ, σ̃, Φ and
if e1 then e2 else e3, σ ↓ v2, σ′′, then by application of the induction hy-
pothesis we obtain ẽ1, σ̃

{

ṽ1, σ̃′, φ1 and True, σ′ �M ṽ1, σ̃′, Φ∧ φ1. A sec-
ond application of the induction hypothesis gives us ẽ2, σ̃′

{

ṽ2, σ̃′′, φ2
and v2, σ′′ �M ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2.

By SE-IF, we have if ẽ1 then ẽ2 else ẽ3, σ̃

{

ṽ2, σ̃′′, φ1 ∧ φ2 ∧ ṽ1.

Case E-IFFALSE

Provided that if e1 then e2 else e3, σ �M ẽ, σ̃, Φ and
if e1 then e2 else e3, σ ↓ v3, σ′′, then by application of the induction hy-
pothesis we obtain ẽ1, σ̃

{

ṽ1, σ̃′, φ1 and False, σ′ �M ṽ1, σ̃′, Φ ∧ φ1.
A second application of the induction hypothesis gives us ẽ3, σ̃′

{

ṽ3, σ̃′′, φ2 and v3, σ′′ �M ṽ3, σ̃′′, Φ ∧ φ1 ∧ φ2.
By SE-IF, we have if ẽ1 then ẽ2 else ẽ3, σ̃

{

ṽ3, σ̃′′, φ1 ∧ φ3 ∧ ¬ṽ1.

180 Appendix E. Assistive TopHat soundness and completeness

Case E-REF

Provided that ref e, σ �M ẽ, σ̃, Φ and ref e, σ ↓ l, σ′[l 7→ v], then by
application of the induction hypothesis we obtain ẽ, σ̃

{

ṽ, σ̃′, φ and
v, σ′ �M ṽ, σ̃′, Φ ∧ φ. By SE-REF, we have ref ẽ, σ̃

{

l, σ̃′[l 7→ ṽ], φ and
l, σ′[l 7→ v] �M l, σ̃′[l 7→ ṽ], Φ ∧ φ.

Case E-DEREF

Provided that !e, σ �M ẽ, σ̃, Φ and !e, σ ↓ σ′(l), σ′, then by applica-
tion of the induction hypothesis we obtain ẽ, σ̃

{
l, σ̃′, φ and l, σ′ �M

l, σ̃′, Φ ∧ φ. By SE-DEREF, we have !ẽ, σ̃
{

σ̃′(l), σ̃′, φ and σ′(l), σ′ �M
σ̃′(l), σ̃′, Φ ∧ φ.

Case E-ASSIGN

Provided that e1 := e2, σ �M ẽ, σ̃, Φ and e1 := e2, σ ↓ 〈〉, σ′′[l 7→
v2] with e1, σ ↓ l, σ′ and e2, σ′ ↓ v2, σ′′, then by application of the
induction hypothesis we obtain ẽ1, σ̃

{

l, σ̃′, φ1 and l, σ′ �M l, σ̃′, Φ∧ φ1.
A second application of the induction hypothesis gives us ẽ2, σ̃′

{

ṽ2, σ̃′′, φ2 and v2, σ′′ �M ṽ2, σ̃′′, Φ ∧ φ2. By SE-ASSIGN, we have ẽ1 :=
ẽ2, σ̃

{

〈〉, σ̃′′[l 7→ ṽ2], φ1 ∧ φ2 and 〈〉, σ′′[l 7→ v2] �M 〈〉, σ̃′′[l 7→ ṽ2], Φ∧
φ1 ∧ φ2.

Case E-EDIT

Provided that � e, σ �M ẽ, σ̃, Φ and � e, σ ↓ � v, σ′, then by application
of the induction hypothesis we obtain ẽ, σ̃

{

ṽ, σ̃′, φ and v, σ′ �M
ṽ, σ̃′, Φ ∧ φ.

By SE-EDIT, we have � ẽ, σ̃

{

� ṽ, σ̃′, φ and � v, σ′ �M � ṽ, σ̃′, Φ ∧ φ.

Case E-UPDATE

Provided that � e, σ �M ẽ, σ̃, Φ and � e, σ ↓ � l, σ′, then by applica-
tion of the induction hypothesis we obtain ẽ, σ̃

{

l, σ̃′, φ and l, σ′ �M
l, σ̃′, Φ ∧ φ. By SE-UPDATE, we have � ẽ, σ̃

{

� l, σ̃′, φ and � l, σ′ �M
� l, σ̃′, Φ ∧ φ.

Case E-THEN

Provided that e1 I e2, σ �M ẽ, σ̃, Φ and e1 I e2, σ ↓ t1 I e2, σ′, then by
application of the induction hypothesis we obtain ẽ1, σ̃

{

ṽ1, σ̃′, φ and
v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ. By SE-THEN, we have ẽ1 I ẽ2, σ̃

{

ṽ1 I ẽ2, σ̃′, φ
and v1 I e2, σ′ �M ṽ1 I ẽ2, σ̃′, Φ ∧ φ.

Case E-NEXT

Provided that e1 B e2, σ �M ẽ, σ̃, Φ and e1 B e2, σ ↓ t1 B e2, σ′, then by
application of the induction hypothesis we obtain ẽ1, σ̃

{

ṽ1, σ̃′, φ and

E.1. Completeness proofs 181

v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ. By SE-NEXT, we have ẽ1 B ẽ2, σ̃

{

ṽ1 B ẽ2, σ̃′, φ
and v1 B e2, σ′ �M ṽ1 B ẽ2, σ̃′, Φ ∧ φ.

Case E-OR

Provided that e1 � e2, σ �M ẽ, σ̃, Φ and e1 � e2, σ ↓ t1 � t2, σ′′, then by
application of the induction hypothesis we obtain ẽ1, σ̃

{

t̃1, σ̃′, φ1 and
t1, σ′ �M t̃1, σ̃′, Φ ∧ φ1.

A second application of the induction hypothesis gives us
ẽ2, σ̃′

{

t̃2, σ̃′′, φ2 and t2, σ′′ �M t̃2, σ̃′′, Φ ∧ φ2.
By SE-OR, we have ẽ1 � ẽ2, σ̃

{

t̃1 � t̃2, σ̃′′, φ1 ∧ φ2 and t1 � t2, σ′′ �M
t̃1 � t̃2, σ̃′′, Φ ∧ φ1 ∧ φ2.

�

182 Appendix E. Assistive TopHat soundness and completeness

E.2 Soundness proofs

E.2.1 Soundness of simulate

Proof: The structure of this proof of Lemma 7.4.3 is outlined in Fig. 7.4.
For all tasks t and states σ such that t, σ {{∗ ṽ, Ĩ, Φ, we have by defi-

nition of simulation ({{∗) that we know that for each tuple (ṽ, Ĩ, Φ), the
following sequence of symbolic drive steps has occurred.

t, σ {{ t̃1, σ̃1, ı̃1, φ1

t̃1, σ̃1 {{ t̃2, σ̃2, ı̃2, φ2

t̃2, σ̃2 {{ · · ·
· · · {{ t̃n, σ̃n, ı̃n, φn

with V (t̃n, σ̃n) = ṽ and S(φ1 ∧ · · · ∧ φn).

We need to show that there exits an I such that t, σ
I
=⇒∗ v, which is

defined similarly as follows.

t, σ
i1=⇒ t1, σ1

i2=⇒ t2, σ2
i3=⇒ · · · in=⇒ tn, σn with V (tn, σn).

By Lemma 7.4.6, we know that there exists an i1 such that t, σ
i1=⇒ t1, σ1,

since t, σ �∅ t, σ, True. This also gives us that ı̃1 ∼ i1, and t1, σ1 �[s1 7→c1]

t̃1, σ̃1, φ1 with SymOf (ı̃1) = s1 and ValOf (i1) = c1.
By repeatedly applying Lemma 7.4.6, until we arrive at t̃n, σ̃n, we can

show that there indeed exists an input list I such that t, σ
I
=⇒∗ v with [s1 7→

c1, · · · , sn 7→ cn]ṽ = v and [s1 7→ c1, · · · , sn 7→ cn]Φ, namely I = [i1, · · · , in].
�

E.2.2 Soundness of interaction

Proof: The proof of Lemma 7.4.6 only consists of one case, since the sym-
bolic interacting semantics consists of only one rule, SI-HANDLE. Given
that t, σ �M t̃, σ̃, Φ and t̃, σ̃ {{ t̃′, σ̃′, ı̃, φ1, Lemma E.2.1 gives us that for

each tuple (t̃′, σ̃′, ı̃, φ1) there exists an input i such that ı̃ ∼ i, t, σ
i−→ t′, σ′

and t′, σ′ �[s 7→c]M t̃′, σ̃′, Φ ∧ φ1 with s = SymOf (ı̃) and c = ValOf (i).
Then, by Lemma E.2.2, given that t̃′, σ̃′

{ {

t̃′′, σ̃′′, φ2, we obtain that for
each tuple (t̃′′, σ̃′′′, φ2), we have that S(Φ ∧ φ1 ∧ φ2) implies that t′, σ′ ⇓
t′′, σ′′ with t′′, σ′′ �[s 7→c]M t̃′′, σ̃′′, Φ ∧ φ1 ∧ φ2.

The above, together with the I-HANDLE gives us that there exists an

input i such that t, σ
i
=⇒ t′′, σ′′. �

E.2. Soundness proofs 183

E.2.3 Soundness of handle

Lemma E.2.1 (Soundness of handle)
For all concrete tasks t, concrete states σ, symbolic tasks t̃, symbolic states σ̃ path
conditions Φ and mappings M, we have that t, σ �M t̃, σ̃, Φ implies that for
all symbolic inputs ı̃ such that t̃, σ̃ { t̃′, σ̃′, ı̃, φ and for all tuples (t̃′, σ̃′, ı̃, φ),

S(Φ ∧ φ) implies that there exists an input i such that ı̃ ∼ i, t, σ
i−→ t′, σ′ and

t′, σ′ �[s 7→c]M t̃′, σ̃′, Φ ∧ φ where where SymOf (ı̃) = s and ValOf (i) = c.

Proof: We prove Lemma E.2.1 by induction over the derivation t̃, σ̃ {

t̃′, σ̃′, ı̃, φ.

Case SH-FILL

We have t, σ �M � β, σ̃, Φ, since we know from SH-FILL that t̃ = � β.
From the consistency relation, we know that t = M(� β). Since � β does
not contain any symbols, we know that t must be � β too. There exists
only one symbolic execution, namely � β, σ̃ { � s, σ̃, s, True with s : β.

We need to show that there exists an i such that s ∼ i and � v, σ
i−→ t′, σ′,

by H-FILL.
Any concrete value c of type β will do. Now we have to show that

we end up with � c, σ �[s 7→c]M � s, σ̃, Φ ∧ True, which holds trivially.

Case SH-CHANGE

Since we have t, σ �M � ṽ, σ̃, Φ and � ṽ, σ̃ { � s, σ̃, s, True with ṽ, s : β,
we know that either ṽ is a concrete value, or M contains a mapping such
that Mṽ becomes a concrete value c. We know therefore that t must be
� c with c : β.

We need to show that there exists an i such that s ∼ i and � c, σ
i−→

t′, σ′ by H-CHANGE.
Any concrete value c′ of the same type as c will do. Now we have to

show that we end up with � c′, σ �[s 7→c′]M � s, σ̃, Φ ∧ True, which holds
trivially.

Case SH-UPDATE

Since we have t, σ �M � l, σ̃, Φ and � l, σ̃ { � l, σ̃[l 7→ s], s, True with
σ̃(l), s : β, we know that t must be � l too, t̃ contains no symbols. We

need to show that there exists an i such that s ∼ i and � l, σ
i−→ t′, σ′ by

H-UPDATE.
Any concrete value c of the same type as l will do. Now we have to

show that we end up with � l, σ[l 7→ c] �[s 7→c]M � l, σ̃[l 7→ s], Φ ∧ True,
which holds trivially.

184 Appendix E. Assistive TopHat soundness and completeness

Case SH-NEXT

Since we have t, σ �M t̃1 B ẽ2, σ̃, Φ and t̃1 B ẽ2, σ̃ { t̃′1 B ẽ2, σ̃1, ı̃, φ1 ∪
t̃2, σ̃2, C, φ2, we know that Mt̃1 B ẽ2 = t, which comes down to t1 B e2 for
some concrete t1 and e2.

In this case, we have two sets of symbolic executions.
For all tuples (t̃′1 B ẽ2, σ̃′1, ı̃, φ1), we know by application of the induc-

tion hypothesis that there exits an i such that ı̃ ∼ i, t1, σ
i−→ t′1, σ′ and

t′1, σ′ �[s 7→c]M t̃′1, σ̃′, Φ ∧ φ1 where ValOf (i) = c and ValOf (ı̃) = s. Therefore
we also have t′1 B e2, σ′1 �[s 7→c]M t̃′1 B ẽ2, σ̃′1, Φ ∧ φ1.

For all tuples (t̃2, σ̃′2, C, φ2), we first have by Lemma E.2.5 that v1, σ �M
ṽ1, σ̃, Φ. Now, before we can apply Lemma E.2.2, we need to establish
that e2 v1, σ �M ẽ2 ṽ1, σ̃, Φ holds. This means that we have to show that
Mẽ2 ṽ1 = e2 v1. Since application of the mapping is distributive, it suffices
to show that Mṽ1 = v1, which is given, and Mẽ2 = e2, which follows from
the premise as well.

At this point, by application of Lemma E.2.2, we obtain that e2 v1, σ ⇓
t2, σ′2 and t2, σ′2 �M t̃2, σ̃′2, Φ∧ φ2. This, together with the H-NEXT rule leads
us to conclude that this case holds as well.

Case SH-PASSNEXT, SH-PASSNEXTFAIL

Since we have t, σ �M t̃1 B ẽ2, σ̃, Φ and t̃1 B ẽ2, σ̃ { t̃′1 B ẽ2, σ̃′, ı̃, φ,
we know that Mt̃1 B ẽ2 = t, which comes down to t1 B e2 for some con-
crete t1 and e2.

For all tuples (t̃′1 B ẽ2, σ̃′1, ı̃, φ1), we know by application of the in-

duction hypothesis that there exits an i such that ı̃ ∼ i, t1, σ
i−→ t′1, σ′

and t′1, σ′ �[s 7→c]M t̃′1, σ̃′, Φ ∧ φ1 where ValOf (i) = c and ValOf (ı̃) = s.
Therefore we also have t′1 B e2, σ′1 �[s 7→c]M t̃′1 B ẽ2, σ̃′1, Φ ∧ φ1.

Case SH-PASSTHEN

Since we have t, σ �M t̃1 I ẽ2, σ̃, Φ and t̃1 I ẽ2, σ̃ { t̃′1 I ẽ2, σ̃′, ı̃, φ, we
know that Mt̃1 B ẽ2 = t, which comes down to t1 B e2 for some concrete
t1 and e2.

For all tuples (t̃′1 I ẽ2, σ̃′, ı̃, φ), we know by application of the induc-

tion hypothesis that there exists an i such that ı̃ ∼ i, t1, σ
i−→ t′1, σ′

and t′1, σ′ �[s 7→c]M t̃′1, σ̃′, Φ ∧ φ1 where ValOf (i) = c and SymOf (ı̃) = s.
Therefore we also have t′1 I e2, σ′1 �[s 7→c]M t̃′1 I ẽ2, σ̃′1, Φ ∧ φ1.

Case SH-PICK

In this case, we have two sets of symbolic executions.

E.2. Soundness proofs 185

For all tuples (t̃1, σ̃1, L, φ1), we obtain from Lemma E.2.2 that
e1, σ ⇓ t1, σ1 with t1, σ1 �M t̃1, σ̃1, Φ ∧ φ1.

For all tuples (t̃2, σ̃2, R, φ2), we obtain from Lemma E.2.2 that
e2, σ ⇓ t2, σ2 with t2, σ2 �M t̃2, σ̃2, Φ ∧ φ2.

Case SH-PICKLEFT

For all tuples (t̃1, σ̃1, L, φ1), we obtain from Lemma E.2.2 that
e1, σ ⇓ t1, σ1 with t1, σ1 �M t̃1, σ̃1, Φ ∧ φ1. This, together with the H-
PICKLEFT rule leads us to conclude that this case holds as well.

Case SH-PICKRIGHT

For all tuples (t̃2, σ̃2, R, φ2), we obtain from Lemma E.2.2 that
e2, σ ⇓ t2, σ2 with t2, σ2 �M t̃2, σ̃2, Φ ∧ φ2. This, together with the H-
PICKRIGHT rule leads us to conclude that this case holds as well.

Case SH-AND

We have that t, σ �M t̃1 Z t̃2, σ̃, Φ and t̃1 Z t̃2, σ̃ { t̃′1 Z t̃2, σ̃′1, F ı̃1, φ1 ∪
t̃1 Z t̃′2, σ̃′2, S ı̃2, φ2.

In this case, we have two sets of symbolic executions.
For all tuples (t̃′1 Z t̃2, σ̃′1, F ı̃1, φ1), we know by application of the

induction hypothesis that there exists an i such that ı̃1 ∼ i, t1, σ
i−→ t′1, σ′1

and t′1, σ′1 �[s 7→c]M t̃′1, σ̃′1, Φ ∧ φ1. Then by H-FIRSTAND, we know that

also t1 Z t2, σ
F i−→ t′1 Z t2, σ′1. It follows trivially that t′1 Z t2, σ′1 �[s 7→c]M

t̃′1 Z t̃2, σ̃′1, Φ ∧ φ1.
For all tuples (t̃1 Z t̃′2, σ̃′2, S ı̃2, φ2), we know by application of the

induction hypothesis that there exists an i such that ı̃2 ∼ i, t2, σ
i−→ t′2, σ′2

and t′2, σ′2 �[s 7→c]M t̃′2, σ̃′2, Φ∧ φ2. Then by H-SECONDAND, we know that

also t1 Z t2, σ
S i−→ t1 Z t′2, σ′2. It follows trivially that t1 Z t′2, σ′2 �[s 7→c]M

t̃1 Z t̃′2, σ̃′2, Φ ∧ φ2.

Case SH-OR

This case is proven in the same way as the case for the SH-AND rule.
�

E.2.4 Soundness of normalise

Lemma E.2.2 (Soundness of normalisation)
For all concrete expressions e, concrete states σ, symbolic expressions ẽ, symbolic
states σ̃ path conditions Φ and mappings M, we have that e, σ �M ẽ, σ̃, Φ implies
that if ẽ, σ̃

{ {

t̃, σ̃′, φ, then for all tuples (t̃, σ̃′, φ) it holds that S(Φ ∧ φ) implies
that e, σ ⇓ t, σ′ with t, σ′ �M t̃, σ̃′, Φ ∧ φ.

186 Appendix E. Assistive TopHat soundness and completeness

Proof: We prove Lemma E.2.2 by induction over the derivation ẽ, σ̃
{ {

t̃, σ̃′, φ.
From the premise, we can assume that e, σ �M ẽ, σ̃, Φ. Now, given that

ẽ, σ̃

{ {

t̃, σ̃′, φ, we need to demonstrate that for all tuples (t̃, σ̃′, φ), S(Φ ∧ φ)
implies that e, σ ⇓ t, σ′ with t, σ′ �M t̃, σ̃′, Φ ∧ φ.

The base case is when the SN-DONE rule applies.
In this case, we obtain from Lemma E.2.4 that e, σ ⇓ t, σ′ with t, σ′ �M

t̃, σ̃′, Φ ∧ φ1. In order to show that the N-DONE rule applies, we need
to additionally show that t, σ′ 7→ t′, σ′′. This is directly obtained from
Lemma E.2.3.

The only induction step is when SN-REPEAT applies.
In this case, we obtain from Lemma E.2.4 that e, σ ⇓ t, σ′ with t, σ′ �M

t̃, σ̃′, Φ ∧ φ1, which is exactly what we need to show. Furthermore, by
Lemma E.2.3 we obtain that t, σ′ 7→ t′, σ′′ with t′, σ′′ �M t̃′, σ̃′′, Φ∧ φ1 ∧ φ2.
Then finally, by application of the induction hypothesis, we obtain what we
need to prove: t′, σ′′ ⇓ t′′, σ′′′ with t′′, σ′′′ �M t̃′′, σ̃′′′, Φ ∧ φ1 ∧ φ2 ∧ φ3.

�

E.2.5 Soundness of stride

Lemma E.2.3 (Soundness of stride)
For all concrete tasks t, concrete states σ, symbolic tasks t̃, symbolic states σ̃,
path conditions Φ and mappings M, we have that t, σ �M t̃, σ̃, Φ implies that if
t̃, σ̃ 7{ t̃′, σ̃′, φ, then for all tuples (t̃′, σ̃′, φ) it holds that S(Φ ∧ φ) implies that
t, σ 7→ t′, σ′ with t′, σ′ �M t̃′, σ̃′, Φ ∧ φ.

Proof: Provided that t, σ �M t̃, σ̃, Φ and t̃, σ̃ 7{ t̃′, σ̃′, φ, we want to show
that for all tuples (t̃′, σ̃′, φ), we have S(Φ∧ φ) implies that t, σ 7→ t′, σ′. We
prove Lemma E.2.3 by induction over the derivation t̃, σ̃ 7{ t̃′, σ̃′, φ.

Case SS-EDIT

Given that t, σ �M � ṽ, σ̃, Φ and � ṽ, σ̃ 7{ � ṽ, σ̃, True, we know that
t = �Mṽ, and we have �Mṽ, σ 7→ �Mṽ, σ by S-EDIT and �Mṽ, σ �M
� ṽ, σ̃, Φ, since none of the tasks and states were altered.

Case SS-FILL, SS-UPDATE, SS-FAIL, SS-XOR

These cases are proven in the same way as the case for SS-EDIT.

Case SS-THENSTAY

Provided that t, σ �M t̃1 I ẽ2, σ̃, Φ and t̃1 I ẽ2, σ̃ 7{ t̃′1 I ẽ2, σ̃′, φ, we
obtain from the induction hypothesis that t1, σ 7→ t′1, σ′ and t′1, σ′ �M

E.2. Soundness proofs 187

t̃′1, σ̃′, Φ. From this, we can directly conclude that t1 I e2, σ 7→ t′1 I e2, σ′

and t′1 I e2, σ′ �M t̃′1 I ẽ2, σ̃′, Φ.

Case SS-THENFAIL

Provided that t, σ �M t̃1 I ẽ2, σ̃, Φ and t̃1 I ẽ2, σ̃ 7{ t̃′1 I ẽ2, σ̃′, φ, we
obtain from the induction hypothesis that t1, σ 7→ t′1, σ′ and t′1, σ′ �M
t̃′1, σ̃′, Φ. From this, we can directly conclude that t1 I e2, σ 7→ t′1 I e2, σ′

and t′1 I e2, σ′ �M t̃′1 I ẽ2, σ̃′, Φ.

Case SS-THENCONT

Provided that t, σ �M t̃1 I ẽ2, σ̃, Φ and t̃1 I ẽ2, σ̃ 7{ t̃2, σ̃′, φ1 ∧ φ2 with
t̃1, σ̃ 7{ t̃′1, σ̃′, φ1 and V (t̃′1, σ̃′) = ṽ1, we obtain from the induction
hypothesis that t1, σ 7→ t′1, σ′ and t′1, σ′ �M t̃′1, σ̃′, Φ. From Lemma E.2.5
we know that the value function preserves the consistency relation, so
we have that v1, σ′ �M ṽ1, σ̃′, Φ with V (t′1, σ′) = v1.

At this point, we have e2v1, σ′ �M ẽ2ṽ1, σ̃′, Φ ∧ φ1 and ẽ2ṽ1, σ̃′

{

t̃2, σ̃′′, φ2. This allows us to apply Lemma E.2.4 to obtain e2v1, σ′ ↓ t2, σ′′

and t2, σ′′ �M t̃2, σ̃′′, Φ ∧ φ1 ∧ φ2.
From this, we can directly conclude that t1 I e2, σ 7→ t2, σ′′ and

t2, σ′′ �M t̃2, σ̃′′, Φ ∧ φ1 ∧ φ2.

Case SS-ORLEFT

Provided that t, σ �M t̃1 � t̃2, σ̃, Φ and t̃1 � t̃2, σ̃ 7{ t̃′1, σ̃′, φ, we ob-
tain from the induction hypothesis that t1, σ 7→ t′1, σ′ and t′1, σ′ �M
t̃′1, σ̃′, Φ ∧ φ. From this, we can directly conclude that t1 � t2, σ 7→ t′1, σ′.

Case SS-ORRIGHT

Provided that t, σ �M t̃1 � t̃2, σ̃, Φ and t̃1 � t̃2, σ̃ 7{ t̃′2, σ̃′′, φ1 ∧ φ2, we
obtain from the induction hypothesis that t1, σ 7→ t′1, σ′ and t′1, σ′ �M
t̃′1, σ̃′, Φ ∧ φ1. Then by a second application of the induction hypothesis,
we obtain that t2, σ′ 7→ t′2, σ′′ and t′2, σ′′ �M t̃′2, σ̃′′, Φ ∧ φ1 ∧ φ2. This
leads us to conclude t1 � t2, σ 7→ t′2, σ′′.

Case SS-ORNONE

Provided that t, σ �M t̃1 � t̃2, σ̃, Φ and t̃1 � t̃2, σ̃ 7{ t̃′2, σ̃′′, φ1 ∧ φ2, we
obtain from the induction hypothesis that t1, σ 7→ t′1, σ′ and t′1, σ′ �M
t̃′1, σ̃′, Φ ∧ φ1. Then by a second application of the induction hypoth-
esis, we obtain that t2, σ′ 7→ t′2, σ′′ and t′2, σ′′ �M t̃′2, σ̃′′, Φ ∧ φ1 ∧ φ2.
This leads us to conclude t1 � t2, σ 7→ t′1 � t′2, σ′′ and t′1 � t′2, σ′′ �M
t̃′1 � t̃′2, σ̃′′, Φ ∧ φ1 ∧ φ2.

188 Appendix E. Assistive TopHat soundness and completeness

Case SS-NEXT

Provided that t, σ �M t̃1 B ẽ2, σ̃, Φ and t̃1 B ẽ2, σ̃ 7{ t̃′1 I ẽ2, σ̃′, φ, we
obtain from the induction hypothesis that t1, σ 7→ t′1, σ′ and t′1, σ′ �M
t̃′1, σ̃′, Φ ∧ φ. From this, we can directly conclude that t1 B e2, σ 7→
t′1 B e2, σ′ and t′1 B e2, σ′ �M t̃′1 B ẽ2, σ̃′, Φ ∧ φ.

Case SS-AND

Provided that t, σ �M t̃1 Z t̃2, σ̃, Φ and t̃1 Z t̃2, σ̃ 7{ t̃′1 Z t̃′2, σ̃′′, φ1 ∧
φ2, we obtain from the induction hypothesis that t1, σ 7→ t′1, σ′ and
t′1, σ′ �M t̃′1, σ̃′, Φ ∧ φ1. Then by a second application of the induction
hypothesis, we obtain that t2, σ′ 7→ t′2, σ′′ and t′2, σ′′ �M t̃′2, σ̃′′, Φ∧ φ1 ∧
φ2. This leads us to conclude t1 Z t2, σ 7→ t′1 Z t′2, σ′′ and t′1 Z t′2, σ′′ �M
t̃′1 Z t̃′2, σ̃′′, Φ ∧ φ1 ∧ φ2.

�

E.2.6 Soundness of evaluate

Lemma E.2.4 (Soundness of evaluate)
For all concrete expressions e, concrete states σ, symbolic expressions ẽ, symbolic
states σ̃, path conditions Φ and mappings M, we have that e, σ �M ẽ, σ̃, Φ implies
that if ẽ, σ̃

{

ṽ, σ̃′, φ, then for all tuples (ṽ, σ̃′, φ) it holds that S(Φ ∧ φ) implies
that e, σ ↓ v, σ′ with v, σ′ �M ṽ, σ̃′, Φ ∧ φ.

Proof: We prove Lemma E.2.4 by induction over the derivation ẽ, σ̃

{

ṽ, σ̃′, φ.

Case SE-VALUE

We assume e, σ �M ṽ, σ̃, Φ and ṽ, σ̃

{

ṽ, σ̃, True. By E-VALUE we have
v, σ ↓ v, σ, so this case holds trivially.

Case SE-PAIR

Provided that e, σ �M 〈ẽ1, ẽ2〉, σ̃, Φ and 〈ẽ1, ẽ2〉, σ̃

{

〈ṽ1, ṽ2〉, σ̃′′, φ1 ∧ φ2,
we know that e = 〈e1, e2〉. We obtain from the induction hypothesis
that e1, σ ↓ v1, σ′ with v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ1. Then by a second ap-
plication of the induction hypothesis, we obtain that e2, σ′ ↓ v2, σ′′

with v2, σ′′ �M ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2. From this, we can conclude that
〈e1, e2〉, σ ↓ 〈v1, v2〉, σ′′ with 〈v1, v2〉, σ′′ �M 〈ṽ1, ṽ2〉, σ̃′′, Φ ∧ φ1 ∧ φ2.

Case SE-FIRST

Provided that e, σ �M fst ẽ, σ̃, Φ and fst ẽ, σ̃

{

ṽ1, σ̃′′, φ, we know that
e = fst e. We obtain from the induction hypothesis that e, σ ↓ 〈v1, v2〉, σ′

E.2. Soundness proofs 189

with 〈v1, v2〉, σ′ �M 〈ṽ1, ṽ2〉, σ̃′, Φ ∧ φ. From this, we can conclude that
fst e, σ ↓ v1, σ′ and v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ .

Case SE-SECOND

Provided that e, σ �M snd ẽ, σ̃, Φ and snd ẽ, σ̃

{

ṽ2, σ̃′′, φ, we know that
e = snd e. we obtain from application of the induction hypothesis that
e, σ ↓ 〈v1, v2〉, σ′ with 〈v1, v2〉, σ′ �M 〈ṽ1, ṽ2〉, σ̃′, Φ ∧ φ. From this, we
can conclude that snd e, σ ↓ v2, σ′ and v2, σ′ �M ṽ2, σ̃′, Φ ∧ φ .

Case SE-CONS

Provided that e, σ �M ẽ1 :: ẽ2, σ̃, Φ and ẽ1 :: ẽ2, σ̃

{

ṽ1 :: ṽ2, σ̃′′, φ1 ∧ φ2,
we know that e = e1 :: e2. We obtain from the induction hypothesis
that e1, σ ↓ v1, σ′ with v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ1. Then by a second ap-
plication of the induction hypothesis, we obtain that e2, σ′ ↓ v2, σ′′

with v2, σ′′ �M ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2. From this, we can conclude that
e1 :: e2, σ ↓ v1 :: v2, σ′′ with v1 :: v2, σ′′ �M ṽ1 :: ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2.

Case SE-HEAD

Provided that e, σ �M head ẽ, σ̃, Φ and head ẽ, σ̃

{

ṽ1, σ̃′, φ, we know
that e = head e. We obtain from the induction hypothesis that e, σ ↓ v1 ::
v2, σ′ with v1 :: v2, σ′ �M ṽ1 :: ṽ2, σ̃′, Φ ∧ φ. From this, we can conclude
that head e, σ ↓ v1, σ′.

Case SE-TAIL

Provided that e, σ �M tail ẽ, σ̃, Φ and tail ẽ, σ̃

{

ṽ2, σ̃′, φ, we know that
e = tail e. We obtain from the induction hypothesis that e, σ ↓ v1 :: v2, σ′

with v1 :: v2, σ′ �M ṽ1 :: ṽ2, σ̃′, Φ ∧ φ. From this, we can conclude that
tail e, σ ↓ v2, σ′.

Case SE-APP

Provided that e, σ �M ẽ1ẽ2, σ̃, Φ and ẽ1ẽ2, σ̃

{

ṽ1, σ̃′′′, φ1 ∧ φ2 ∧ φ3,
we know that e = e1e2. We obtain from the induction hypothesis that
e1, σ ↓ λx : τ.e1

′, σ′ with λx : τ.e1
′, σ′ �M λx : τ.ẽ′1, σ̃′, Φ ∧ φ1.

Then by a second application of the induction hypothesis, we obtain
that e2, σ′ ↓ v2, σ′′ with v2, σ′′ �M ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2.

A third and final application of the induction hypothesis gives us
that e′1[x 7→ v2], σ′′ ↓ v1, σ′′′ with v1, σ′′′ �M ṽ1, σ̃′′′, Φ ∧ φ1 ∧ φ2 ∧ φ3.
From this, we can conclude that e1e2, σ ↓ v1, σ′′′.

Case SE-IF

Provided that e, σ �M if ẽ1 then ẽ2 else ẽ3, σ̃, Φ and
if ẽ1 then ẽ2 else ẽ3, σ̃

{

ṽ2, σ̃′′, φ1 ∧ φ2 ∧ ṽ1 ∪ ṽ3, σ̃′′′, φ1 ∧ φ3 ∧ ¬ṽ1, we

190 Appendix E. Assistive TopHat soundness and completeness

know that e = if e1 then e2 else e3. We obtain from the induction hy-
pothesis that e1, σ ↓ v1, σ′ with v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ1. At this point,
we have two potential branches.

In case of v1, we obtain from application of the induction hypothesis
that e2, σ′ ↓ v2, σ′′ with v2, σ′′ �M ṽ2, σ̃′′, Φ∧ φ1 ∧ φ2. From this, we can
conclude that if e1 then e2 else e3, σ ↓ v2, σ′′ with v2, σ′′ �M ṽ2, σ̃′′, Φ ∧
φ1 ∧ φ2.

And in case of ¬v1, we obtain from application of the induction
hypothesis that e3, σ′ ↓ v3, σ′′ with v3, σ′′ �M ṽ3, σ̃′′, Φ ∧ φ1 ∧ φ3. From
this, we can conclude that if e1 then e2 else e3, σ ↓ v3, σ′′ with v3, σ′′ �M
ṽ3, σ̃′′, Φ ∧ φ1 ∧ φ3.

Case SE-REF

Provided that e, σ �M ref ẽ, σ̃, Φ and ref ẽ, σ̃

{

l, σ̃′[l 7→ ṽ], φ, we
know that e = ref e. We obtain from the induction hypothesis that
e, σ ↓ v1, σ′ with v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ. From this, we can conclude
that ref e, σ ↓ l, σ′[l 7→ v] with l, σ′[l 7→ v] �M l, σ̃′[l 7→ ṽ], Φ ∧ φ.

Case SE-DEREF

Provided that e, σ �M!ẽ, σ̃, Φ and !ẽ, σ̃

{

σ̃′(l), σ̃′, φ, we know that
e =!e. We obtain from the induction hypothesis that e, σ ↓ l, σ′ with
l, σ′ �M l, σ̃′, Φ ∧ φ. From this, we can conclude that !e, σ ↓ σ′(l), σ′

with σ′(l), σ′ �M σ̃′(l), σ̃′, Φ ∧ φ.

Case SE-ASSIGN

Provided that e, σ �M ẽ1 := ẽ2, σ̃, Φ and ẽ1 := ẽ2, σ̃

{

〈〉, σ̃′′[l 7→
ṽ2], φ1 ∧ φ2, we know that e = e1 := e2. We obtain from the induction
hypothesis that e1, σ ↓ l, σ′ with l, σ′ �M l, σ̃′, Φ∧ φ1. Then by a second
application of the induction hypothesis, we obtain that e2, σ′ ↓ v2, σ′′

with v2, σ′′ �M ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2. From this, we can conclude that
e1 := e2, σ ↓ 〈〉, σ′′[l 7→ v2] with 〈〉, σ′′[l 7→ v2] �M 〈〉, σ̃′′[l 7→ ṽ2], Φ ∧
φ1 ∧ φ2.

Case SE-EDIT

Provided that e, σ �M � ẽ, σ̃, Φ and � ẽ, σ̃

{

� ṽ, σ̃′, φ, we know that
e = � e. We obtain from the induction hypothesis that e, σ ↓ v, σ′ with
v, σ′ �M ṽ, σ̃′, Φ ∧ φ. From this, we can conclude that � e, σ ↓ � v, σ′

with � v, σ′ �M � ṽ, σ̃′, Φ ∧ φ.

Case SE-UPDATE

Provided that e, σ �M � ẽ, σ̃, Φ and � ẽ, σ̃

{

� l, σ̃′, φ, we know that
e = � e. We obtain from the induction hypothesis that e, σ ↓ l, σ′ with

E.2. Soundness proofs 191

l, σ′ �M l, σ̃′, Φ ∧ φ. From this, we can conclude that � e, σ ↓ � l, σ′

with � l, σ′ �M � l, σ̃′, Φ ∧ φ.

Case SE-THEN

Provided that e, σ �M ẽ1 I ẽ2, σ̃, Φ and ẽ1 I ẽ2, σ̃
{

t̃1 I ẽ2, σ̃′, φ, we
know that e = e1 I e2. We obtain from the induction hypothesis that
e1, σ ↓ t1, σ′ with t1, σ′ �M t̃1, σ̃′, Φ ∧ φ. From this, we can conclude
that e1 I e2, σ ↓ t1 I e2, σ′ with t1 I e2, σ′ �M t̃1 I e2, σ̃′, Φ ∧ φ.

Case SE-NEXT

Provided that e, σ �M ẽ1 B ẽ2, σ̃, Φ and ẽ1 B ẽ2, σ̃

{

t̃1 B ẽ2, σ̃′, φ, we
know that e = e1 B e2. We obtain from the induction hypothesis that
e1, σ ↓ t1, σ′ with t1, σ′ �M t̃1, σ̃′, Φ ∧ φ. From this, we can conclude
that e1 B e2, σ ↓ t1 B e2, σ′ with t1 B e2, σ′ �M t̃1 B e2, σ̃′, Φ ∧ φ.

Case SE-OR

Provided that e, σ �M ẽ1 � ẽ2, σ̃, Φ and ẽ1 � ẽ2, σ̃

{

ṽ1 � ṽ2, σ̃′′, φ1 ∧ φ2,
we know that e = e1 � e2. We obtain from the induction hypothesis
that e1, σ ↓ v1, σ′ with v1, σ′ �M ṽ1, σ̃′, Φ ∧ φ1. Then by a second ap-
plication of the induction hypothesis, we obtain that e2, σ′ ↓ v2, σ′′

with v2, σ′′ �M ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2. From this, we can conclude that
e1 � e2, σ ↓ v1 � v2, σ′′ with v1 � v2, σ′′ �M ṽ1 � ṽ2, σ̃′′, Φ ∧ φ1 ∧ φ2.

�

E.2.7 V preserves consistency

Lemma E.2.5 (V preserves consistency)
For all concrete tasks t, concrete states σ, symbolic tasks t̃, symbolic states σ̃, path
conditions Φ and mappings M = [s1 7→ c1 · · · sn 7→ cn], if t, σ �M t̃, σ̃, Φ and
V (t, σ) = v and V (t̃, σ̃), then also v, σ �M ṽ, σ̃, Φ

Proof: We prove Lemma E.2.5 by induction over t̃.

Case t̃ = � s
If we have t, σ �M � s, σ̃, Φ, then by definition of consistency t must be
� c for some concrete value of the same type as s.

Then by definition of V , we have V (� c, σ) = c and V (� s, σ̃) = s.
Since we have M(� s) = � c from the premise, we know that Ms = c,
since mapping propagates. Therefore c, σ �M s, σ̃, Φ.

Case t̃ = � β

If we have t, σ �M � β, σ̃, Φ, then t is also � β by definition of consis-
tency.

192 Appendix E. Assistive TopHat soundness and completeness

By definition of V , V (� β, σ) = ⊥ and V (� β, σ̃) = ⊥, so this case
holds trivially.

Case t̃ = � l
If we have t, σ �M � l, σ̃, Φ, then t is also � l by definition of consistency.

By definition of V , V (� l, σ) = σ(l) and V (� l, σ̃) = σ̃(l).
We now need to show that M(σ̃(l)) = σ(l). From the premise we

know that Mσ̃ = σ, from which this immediately follows.

Case t̃ =
If we have t, σ �M , σ̃, Φ, then t is also by definition of consistency.

By definition of V , V (, σ) = ⊥ and V (, σ̃) = ⊥, so we know that
this case holds trivially.

Case t̃ = t̃1 I ẽ2

If we have t, σ �M t̃1 I ẽ2, σ̃, Φ, then t is t1 I e2 by definition of consis-
tency.

By definition of V , V (t1 I e2, σ) = ⊥ and V (t̃1 I ẽ2, σ̃) = ⊥, so we
know that this case holds trivially.

Case t̃ = t̃1 B ẽ2

If we have t, σ �M t̃1 B ẽ2, σ̃, Φ, then t is t1 B e2 by definition of consis-
tency.

By definition of V , V (t1 B e2, σ) = σ(l) and V (t̃1 B ẽ2, σ̃) = ⊥, so we
know that this case holds trivially.

Case t̃ = t̃1 Z t̃2

If we have t, σ �M t̃1 Z t̃2, σ̃, Φ, then t is also t1 Z t2 by definition of
consistency.

By definition of V , we can find ourselves in one of two cases.
If V (t̃1, σ) = ṽ1 and V (t̃2, σ) = ṽ2, then V (t1 Z t2, σ) = 〈v1, v2〉 and

V (t̃1 Z t̃2, σ̃) = 〈ṽ1, ṽ2〉. This case follows from the induction hypothesis.
Otherwise, if either one of the two branches returns ⊥, we have that

V (t1 Z t2, σ) = ⊥ and V (t̃1 Z t̃2, σ̃) = ⊥, so we know that this case
holds trivially

Case t̃ = t̃1 � t̃2

If we have t, σ �M t̃1 � t̃2, σ̃, Φ, then t is also t1 � t2 by definition of
consistency.

By definition of V , we find ourselves in one of three cases.
If V (t̃1, σ̃) = ṽ1, then V (t̃1 � t̃2, σ̃) = ṽ1 and V (t1 � t2, σ) = v1. This

case follows from the induction hypothesis.

E.2. Soundness proofs 193

Otherwise, if V (t̃2, σ̃) = ṽ2, then V (t̃1 � t̃2, σ̃) = ṽ2 and V (t1 � t2, σ) =
v2. This case follows from the induction hypothesis.

Otherwise, if either one of the two branches returns ⊥, we have that
V (t1 � t2, σ) = ⊥ and V (t̃1 � t̃2, σ̃) = ⊥, so we know that this case holds
trivially.

Case t̃ = t̃1 ♦ t̃2

If we have t, σ �M t̃1 ♦ t̃2, σ̃, Φ, then t is t1 ♦ t2 by definition of consis-
tency.

By definition of V , V (t1 ♦ t2, σ) = ⊥ and V (t̃1 ♦ t̃2, σ̃) = ⊥, so we
know that this case holds trivially.

�

195

References

Aalst, W. M. P. v. d. (1998). The application of petri nets to workflow
management. Journal of Circuits, Systems, and Computers, 8(1), 21–66.

Aalst, W. M. P. v. d. (2011). Process mining - discovery, conformance and
enhancement of business processes. Springer.

Aalst, W. M. P. v. d., & ter Hofstede, A. H. M. (2005). YAWL: yet another
workflow language. Information Systems, 30(4), 245–275.

Aalst, W. M. P. v. d., ter Hofstede, A. H. M., Kiepuszewski, B., & Barros,
A. P. (2003). Workflow patterns. Distributed and Parallel Databases,
14(1), 5–51.

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2009). A new
paradigm for intelligent tutoring systems: Example-tracing tutors. I. J.
Artificial Intelligence in Education, 19(2), 105–154.

Apfelmus, H. (2019). reactive-banana. https://hackage.haskell.org/
package/reactive-banana. (Accessed 13-Febuary-2019)

Barker, P., & Banerji, A. (1995). Designing electronic performance support
systems. Innovations in Education and Training International, 32(1), 4–12.

Basu, A., & Blanning, R. W. (2000). A formal approach to workflow analysis.
Information Systems Research, 11(1), 17–36.

Berner, E. S., & La Lande, T. J. (2007). Overview of clinical decision support
systems. In Clinical decision support systems (pp. 3–22). Springer.

Berry, G., & Gonthier, G. (1992). The Esterel synchronous programming
language: Design, semantics, implementation. Science of Computer
Programming, 19(2), 87–152.

Berry, G., Nicolas, C., & Serrano, M. (2011). HipHop: A synchronous reactive
extension for Hop. In Proceedings of the 1st ACM SIGPLAN international
workshop on programming language and systems technologies for internet
clients (pp. 49–56).

Berry, G., & Serrano, M. (2014). Hop and HipHop : Multitier web orches-
tration. In International conference on distributed computing and internet
technology (pp. 1–13).

Boussinot, F., & De Simone, R. (1991). The Esterel language. Proceedings of
the IEEE, 79(9), 1293–1304.

Boyer, R. S., Elspas, B., & Levitt, K. N. (1975). SELECT - a formal system for

https://hackage.haskell.org/package/reactive-banana
https://hackage.haskell.org/package/reactive-banana

196 REFERENCES

testing and debugging programs by symbolic execution. In Proceedings
of the international conference on reliable software (pp. 234–245). ACM.

Bucur, S., Kinder, J., & Candea, G. (2014). Prototyping symbolic execu-
tion engines for interpreted languages. In Architectural support for
programming languages and operating systems (pp. 239–254).

Bylander, T. (1994). The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69(1-2), 165–204.

Cadar, C., Dunbar, D., & Engler, D. R. (2008). KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs.
In Proceedings eight USENIX symposium on operating systems design and
implementation (pp. 209–224). USENIX Association.

Chang, S., Knauth, A., & Torlak, E. (2018). Symbolic types for lenient
symbolic execution. Proceedings of the ACM on Programming Languages,
POPL’18, 2, 40:1–40:29.

Claessen, K., & Hughes, J. (2000). QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the fifth ACM
SIGPLAN international conference on functional programming, ICFP’00
(pp. 268–279).

Cooper, G., & Krishnamurthi, S. (2004). FrTime: Functional reactive program-
ming in plt scheme (Tech. Rep. No. CS-03-20). Rhode Island: Department
of Computer Science, Brown University.

Downey, A. B. (2008). The little book of semaphores. Green Tea Press.
Elliott, C., & Hudak, P. (1997). Functional reactive animation. In Proceed-

ings of the second ACM SIGPLAN international conference on functional
programming, ICFP’97 (pp. 263–273).

Fikes, R., & Nilsson, N. J. (1971). STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2(3-4),
189–208.

Findler, R. B., & Felleisen, M. (2002). Contracts for higher-order functions.
In Proceedings of the seventh ACM SIGPLAN international conference on
functional programming, ICFP’02 (pp. 48–59).

Galagan, N. (1979). Problem description language SITPLAN. Cybernetics
and Systems Analysis, 15(2), 255–266.

Gerdes, A., Heeren, B., & Jeuring, J. (2012). Teachers and students in charge
- using annotated model solutions in a functional programming tutor.
In 21st century learning for 21st century skills - 7th european conference of
technology enhanced learning, EC-TEL’12 (pp. 383–388).

Gerdes, A., Heeren, B., Jeuring, J., & van Binsbergen, L. T. (2017). Ask-
Elle: an adaptable programming tutor for Haskell giving automated
feedback. I. J. Artificial Intelligence in Education, 27(1), 65–100.

REFERENCES 197

Gerdes, A., Jeuring, J., & Heeren, B. (2012). An interactive functional pro-
gramming tutor. In Proceedings of iticse 2012: the 17th annual conference
on innovation and technology in computer science education (pp. 250–255).
ACM.

Giantsios, A., Papaspyrou, N., & Sagonas, K. (2017). Concolic testing for
functional languages. Science of Computer Programming, 147, 109–134.

Hallahan, W. T., Xue, A., Bland, M. T., Jhala, R., & Piskac, R. (2019). Lazy
counterfactual symbolic execution. In Proceedings of the 40th ACM
SIGPLAN conference on programming language design and implementation,
PLDI’19 (pp. 411–424).

Hallahan, W. T., Xue, A., & Piskac., R. (2017). Building a symbolic execution
engine for Haskell. In Proceedings of TAPAS 17.

Heeren, B., & Jeuring, J. (2014). Feedback services for stepwise exercises.
Science of Computer Programming, 88, 110–129.

Heeren, B., Jeuring, J., & Gerdes, A. (2010). Specifying rewrite strategies for
interactive exercises. Mathematics in Computer Science, 3(3), 349–370.

Hewitt, C. (1969). PLANNER: A language for proving theorems in robots. In
Proceedings of the 1st international joint conference on artificial intelligence
(pp. 295–302).

Hoare, C. A. R. (1985). Communicating sequential processes. Prentice Hall.
Hoare, T. (1969). An axiomatic basis for computer programming. CACM:

Communications of the ACM, 12.
Jaffar, J., Murali, V., Navas, J. A., & Santosa, A. E. (2012). TRACER: A sym-

bolic execution tool for verification. In P. Madhusudan & S. A. Seshia
(Eds.), Computer aided verification, CAV’12 (pp. 758–766). Springer-
Verlag.

Jansen, J., & Bolderheij, F. (2018). Dynamic resource and task management.
In Nl arms netherlands annual review of military studies 2018 (pp. 91–105).
Springer.

Jaskelioff, M., Ghani, N., & Hutton, G. (2011). Modularity and imple-
mentation of mathematical operational semantics. Electronic Notes on
Theoretical Computer Science, 229(5), 75–95.

Jeuring, J., Grosfeld, F., Heeren, B., Hulsbergen, M., IJntema, R., Jonker, V., . . .
Wolters, M. (2015). Communicate! A serious game for communication
skills—. In Proceedings of EC-TEL 2015: Design for teaching and learning
in a networked world (Vol. 9307, pp. 513–517). Springer.

Junghanns, A., & Schaeffer, J. (1997). Sokoban: A challenging single-agent
search problem. In In ijcai workshop on using games as an experimental
testbed for ai reasearch.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and
acting in partially observable stochastic domains. Artificial Intelligence,

198 REFERENCES

101(1-2), 99-134.
Keuning, H., Jeuring, J., & Heeren, B. (2019). A systematic literature review

of automated feedback generation for programming exercises. TOCE,
19(1), 3:1–3:43.

King, J. C. (1975). A new approach to program testing. SIGPLAN Notices,
10(6), 228–233.

Klinik, M., Jansen, J. M., & Plasmeijer, R. (2017). The sky is the limit:
Analysing resource consumption over time using skylines. In Proceed-
ings of the 29th symposium on implementation and application of functional
programming languages, IFL’17. ACM.

Kool, B. (2017). Integrated mission management voor C2-ondersteuning. Bache-
lor’s Thesis. (Dutch Defence Academy, Den Helder, The Netherlands)

Koopman, P., Lubbers, M., & Plasmeijer, R. (2018). A task-based DSL for
microcomputers. In Proceedings of the real world domain specific languages
workshop, RWDSL@CGO’18 (pp. 4:1–4:11). ACM.

Koopman, P. W. M., Plasmeijer, R., & Achten, P. (2008). An executable
and testable semantics for itasks. In Proceedings of the 20th symposium
on implementation and application of functional programming languages,
IFL’08.

Kovacs, D. L. (2011). BNF definition of PDDL 3.1.
Kovacs, D. L. (2012). A multi-agent extension of PDDL3. WS-IPC 2012, 19.
Kulik, J. A., & Fletcher, J. (2016). Effectiveness of intelligent tutoring systems:

a meta-analytic review. Review of Educational Research, 86(1), 42–78.
Lavelle, S. (2016). PuzzleScript. https://www.puzzlescript.net. (Accessed

12-Febuary-2019)
Lijnse, B., Jansen, J. M., & Plasmeijer, R. (2012). Incidone: A task-oriented

incident coordination tool. In Proceedings of ISCRAM.
Lim, C., & Harrell, D. F. (2014). An approach to general videogame eval-

uation and automatic generation using a description language. In
Proceedings of ieee cig 2014: Conference on computational intelligence and
games (pp. 1–8).

Luger, G. F. (2005). Artificial intelligence: structures and strategies for complex
problem solving. Pearson education.

Marlow, S. (2010). Haskell 2010 language report [Computer software
manual]. http://www.haskell.org/.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M.,
. . . Wilkins, D. (1998). Pddl-the planning domain definition language.
AIPS-98 planning committee, 3, 14.

Meyer, B. (1992). Applying "design by contract". IEEE Computer, 25(10),
40–51.

Meyerovich, L. A., Guha, A., Baskin, J. P., Cooper, G. H., Greenberg, M.,

https://www.puzzlescript.net
http://www.haskell.org/

REFERENCES 199

Bromfield, A., & Krishnamurthi, S. (2009). Flapjax: a programming
language for ajax applications. In Proceedings of the 24th annual ACM
SIGPLAN conference on object-oriented programming, systems, languages,
and applications, OOPSLA’09 (pp. 1–20).

Milner, R. (1989). Communication and concurrency. Prentice Hall.
Murray, T. (2003). An overview of intelligent tutoring system authoring

tools: Updated analysis of the state of the art. In Authoring tools for
advanced technology learning environments (pp. 491–544). Springer.

Nanevski, A., Morrisett, G., & Birkedal, L. (2006). Polymorphism and
separation in Hoare type theory. ACM SIGPLAN Notices, 41(9), 62–73.

Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., & Birkedal, L. (2008).
Ynot: dependent types for imperative programs. In Proceeding of the
13th ACM SIGPLAN international conference on functional programming,
ICFP’08 (pp. 229–240).

Nguyen, P. C., Tobin-Hochstadt, S., & Horn, D. V. (2017). Higher order
symbolic execution for contract verification and refutation. Journal of
Functional Programming, 27.

Nielson, H. R., & Nielson, F. (1992). Semantics with applications - a formal
introduction. Wiley.

OASIS. (2019). Web services business process execution language. (Accessed
12-Febuary-2019)

Oortgiese, A., van Groningen, J. H. G., Achten, P., & Plasmeijer, R. (2017).
A distributed dynamic architecture for task oriented programming.
In Proceedings of the 29th symposium on implementation and application of
functional programming languages, IFL’17 (pp. 7:1–7:12).

Paquette, L., Lebeau, J., Beaulieu, G., & Mayers, A. (2012). Automating
next-step hints generation using ASTUS. In S. A. Cerri, W. J. Clancey,
G. Papadourakis, & K. Panourgia (Eds.), Intelligent tutoring systems -
11th international conference (pp. 201–211). Springer.

Pearl, J. (1989). Probabilistic reasoning in intelligent systems - networks of
plausible inference. Morgan Kaufmann.

Peyton Jones, S. (2001). Tackling the awkward squad: monadic input/out-
put, concurrency, exceptions, and foreign-language calls in Haskell.
In Engineering theories of software construction, Marktoberdorf summer
school 2000.

Pierce, B. C. (2002). Types and programming languages. MIT Press.
Plasmeijer, R., Achten, P., Koopman, P. W. M., Lijnse, B., van Noort, T., &

van Groningen, J. H. G. (2011). iTasks for a change: type-safe run-time
change in dynamically evolving workflows. In Proceedings of the 2011
ACM SIGPLAN workshop on partial evaluation and program manipulation,
PEPM’11 (pp. 151–160). ACM.

200 REFERENCES

Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., & Koopman, P. W. M.
(2012). Task-oriented programming in a pure functional language.
In Principles and practice of declarative programming, PPDP’12 (pp. 195–
206).

Plasmeijer, R., van Eekelen, M., & van Groningen, J. (2002). Clean language
report version 2.1.

Power, D. J. (2002). Decision support systems: concepts and resources for
managers. Greenwood Publishing Group.

Reinefeld, A. (1993). Complete solution of the eight-puzzle and the benefit
of node ordering in IDA. In Proceedings of the 13th international joint
conference on artificial intelligence (pp. 248–253).

Rosa, D. d. l., Mayol, F., Díaz-Pereira, E., Fernandez, M., & Rosa Jr., D. d. l.
(2004). A land evaluation decision support system (microleis DSS)
for agricultural soil protection: With special reference to the mediter-
ranean region. Environmental Modelling and Software, 19(10), 929–942.

Russell, S. J., & Norvig, P. (2010). Artificial intelligence - A modern approach (3.
internat. ed.). Pearson Education.

Schaik, P. V., Pearson, R., & Barker, P. (2002). Designing electronic perfor-
mance support systems to facilitate learning. Innovations in Education
and Teaching International, 39(4), 289–306.

Sharda, R., Barr, S. H., & MCDonnell, J. C. (1988). Decision support system
effectiveness: a review and an empirical test. Management science, 34(2),
139–159.

Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson,
C. (2002). Past, present, and future of decision support technology.
Decision Support Systems, 33(2), 111–126.

Sottilare, R., Graesser, A., Hu, X., & Brawner, K. (2015). Design recommenda-
tions for intelligent tutoring systems: Authoring tools and expert modeling
techniques. Robert Sottilare.

Steenvoorden, T., Naus, N., & Klinik, M. (2019). Tophat: A formal foundation
for task-oriented programming. In Proceedings of the 21st international
symposium on principles and practice of programming languages, PPDP’19
(pp. 17:1–17:13).

Stutterheim, J. (2017). A cocktail of tools (Unpublished doctoral dissertation).
Radboud University, Nijmegen, The Netherlands.

Stutterheim, J., Achten, P., & Plasmeijer, R. (2015). Static and Dynamic
Visualisations of Monadic Programs. In Implementation and application
of functional languages, IFL’15 (pp. 1–13).

Stutterheim, J., Achten, P., & Plasmeijer, R. (2016). C2 demo.
Stutterheim, J., Achten, P., & Plasmeijer, R. (2017). Maintaining separation

of concerns through task oriented software development. In 18th

REFERENCES 201

international symposium on trends in functional programming, TFP’17.
Stutterheim, J., Plasmeijer, R., & Achten, P. (2014). Tonic: An infrastructure

to graphically represent the definition and behaviour of tasks. In
Trends in functional programming - 15th international symposium, TFP’14
(pp. 122–141).

Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., & Livshits, B. (2013).
Verifying higher-order programs with the dijkstra monad. In ACM
SIGPLAN conference on programming language design and implementation,
PLDI ’13 (pp. 387–398).

Swierstra, W. (2008). Data types à la carte. Journal of Functional Programming,
18(4), 423–436.

Swierstra, W. (2009). A hoare logic for the state monad. In 22nd international
conference on theorem proving in higher order logics, TPHOLs’09 (pp. 440–
451). Springer.

Turban, E. (1988). Decision support and expert systems: Managerial perspectives.
Macmillan.

Visser, E., Benaissa, Z., & Tolmach, A. P. (1998). Building program optimizers
with rewriting strategies. In Proceedings of the third ACM SIGPLAN
international conference on functional programming (ICFP ’98) (pp. 13–
26).

Winskel, G. (1993). The formal semantics of programming languages - an
introduction. MIT Press.

Younes, H. L., & Littman, M. L. (2004). PPDDL1. 0: The language for the
probabilistic part of ipc-4. In Proc. international planning competition.

203

Titles in the IPA Dissertation
Series since 2017

M.J. Steindorfer. Efficient Im-
mutable Collections. Faculty of Sci-
ence, UvA. 2017-01

W. Ahmad. Green Computing: Effi-
cient Energy Management of Multi-
processor Streaming Applications via
Model Checking. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2017-02

D. Guck. Reliable Systems – Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Ra-
dio Applications Scheduled on Het-
erogeneous Multiprocessors. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2017-04

A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communica-
tion on the Internet and in the Inter-
net of Things (IoT). Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty

of Mathematics and Computer Sci-
ence, TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Lim-
itations and Opportunities. Faculty of
Science, UvA. 2017-07

W. Lueks. Security and Privacy via
Cryptography – Having your cake
and eating it too. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2017-08

A.M. Şutîi. Modularity and Reuse
of Domain-Specific Languages: an ex-
ploration with MetaMod. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Spe-
cific Languages. Faculty of Math-
ematics and Computer Science,
TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2017-11

A. Amighi. Specification and Verifica-
tion of Synchronisation Classes in Java:

A Practical Approach. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2018-01

S. Darabi. Verification of Program
Parallelization. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2018-02

J.R. Salamanca Tellez. Coequations
and Eilenberg-type Correspondences.
Faculty of Science, Mathematics
and Computer Science, RU. 2018-03

P. Fiterău-Broştean. Active Model
Learning for the Analysis of Net-
work Protocols. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2018-04

D. Zhang. From Concurrent State
Machines to Reliable Multi-threaded
Java Code. Faculty of Mathe-
matics and Computer Science,
TU/e. 2018-05

H. Basold. Mixed Inductive-
Coinductive Reasoning Types, Pro-
grams and Logic. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2018-06

A. Lele. Response Modeling: Model
Refinements for Timing Analysis of
Runtime Scheduling in Real-time
Streaming Systems. Faculty of Math-
ematics and Computer Science,
TU/e. 2018-07

N. Bezirgiannis. Abstract Behav-
ioral Specification: unifying model-
ing and programming. Faculty of
Mathematics and Natural Sciences,
UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualiza-
tion. Faculty of Mathematics and
Computer Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of rail-
way maintenance: Analysis and op-
timization of maintenance via fault
trees and statistical model checking.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2018-10

F. Yang. A Theory of Executabil-
ity: with a Focus on the Expressiv-
ity of Process Calculi. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2018-11

L. Swartjes. Model-based design
of baggage handling systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2018-12

T.A.E. Ophelders. Continuous Sim-
ilarity Measures for Curves and Sur-
faces. Faculty of Mathematics and
Computer Science, TU/e. 2018-13

M. Talebi. Scalable Performance
Analysis of Wireless Sensor Network.
Faculty of Mathematics and Com-
puter Science, TU/e. 2018-14

R. Kumar. Truth or Dare: Quantita-
tive security analysis using attack trees.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software De-
velopment. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2018-16

M. Mehr. Faster Algorithms for Ge-
ometric Clustering and Competitive
Facility-Location Problems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2018-17

M. Alizadeh. Auditing of User Be-
havior: Identification, Analysis and
Understanding of Deviations. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2018-18

P.A. Inostroza Valdera. Structur-
ing Languages as Object-Oriented
Libraries. Faculty of Science,
UvA. 2018-19

M. Gerhold. Choice and Chance -
Model-Based Testing of Stochastic Be-
haviour. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2018-20

A. Serrano Mena. Type Error Cus-
tomization for Embedded Domain-
Specific Languages. Faculty of Sci-
ence, UU. 2018-21

S.M.J. de Putter. Verification of Con-
current Systems in a Model-Driven
Engineering Workflow. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2019-01

S.M. Thaler. Automation for Informa-
tion Security using Machine Learning.
Faculty of Mathematics and Com-
puter Science, TU/e. 2019-02

Ö. Babur. Model Analytics and
Management. Faculty of Mathe-
matics and Computer Science,
TU/e. 2019-03

A. Afroozeh and A. Izmaylova.
Practical General Top-down Parsers.
Faculty of Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algo-
rithms for Geometric Network Prob-
lems. Faculty of Mathematics and
Computer Science, TU/e. 2019-05

J. Moerman. Nominal Techniques
and Black Box Testing for Automata
Learning. Faculty of Science, Math-
ematics and Computer Science,
RU. 2019-06

V. Bloemen. Strong Connectivity and
Shortest Paths for Checking Models.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2019-07

T.H.A. Castermans. Algorithms for
Visualization in Digital Humanities.
Faculty of Mathematics and Com-
puter Science, TU/e. 2019-08

W.M. Sonke. Algorithms for River
Network Analysis. Faculty of Math-
ematics and Computer Science,
TU/e. 2019-09

J.J.G. Meijer. Efficient Learning
and Analysis of System Behavior.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2019-10

P.R. Griffioen. A Unit-Aware Matrix
Language and its Application in Con-
trol and Auditing. Faculty of Science,
UvA. 2019-11

A.A. Sawant. The impact of API evo-
lution on API consumers and how this
can be affected by API producers and
language designers. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2019-12

W.H.M. Oortwijn. Deductive Tech-
niques for Model-Based Concurrency

Verification. Faculty of Electrical En-
gineering, Mathematics & Com-
puter Science, UT. 2019-13

M.A. Cano Grijalba. Session-
Based Concurrency: Between Oper-
ational and Declarative Views. Fac-
ulty of Science and Engineering,
RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2020-02

R.A. van Rozen. Languages of
Games and Play: Automating Game
Design & Enabling Live Programming.
Faculty of Science, UvA. 2020-03

B. Changizi. Constraint-Based Anal-
ysis of Business Process Models. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2020-04

N. Naus. Assisting End Users in
Workflow Systems. Faculty of Sci-
ence, UU. 2020-05

	Dutch summary
	Abstract
	Acknowledgements
	Introduction
	Publications
	Online resources

	I Rule-based problems & programmer assisted hint generation
	A multi-user feedback framework
	Introduction
	Problem description
	Constructs
	Hints
	Research question

	Problem formalisation
	Semantics

	Trace semantics
	`39`42`"613A``45`47`"603ARuleTree observations
	Traces of `39`42`"613A``45`47`"603ARuleTrees

	Solving algorithms
	Breadth First Trace
	Heuristic Trace

	Implementation
	Properties of the traces function
	Command & Control system

	Conclusions
	Related work
	Rule-based problem modelling
	Workflow Analysis
	Decision Support Systems
	Electronic Performance Support Systems

	Generating next-step hints for tasks, puzzles and exercises
	Introduction
	Ideas
	Using `39`42`"613A``45`47`"603ARuleTree to describe Ideas strategies
	Disjunctive Normal Form
	Gaussian Elimination

	PuzzleScript
	Solving Sokoban

	iTasks
	Solving a sliding puzzle

	Conclusion
	Ideas
	PuzzleScript
	iTasks

	II Task-oriented programming & automatic hint generation
	An example-based introduction to task-oriented programming
	Introduction
	Task-oriented programming
	Implementations of TOP
	Challenges

	TOP by example
	Tasks model collaboration
	Tasks are reusable
	Tasks are driven by user input
	Tasks can be observed
	Tasks are never done
	Tasks can share information
	Tasks are predictable

	Conclusion

	TopHat
	Introduction
	Language
	Expressions
	Editors
	Steps
	Parallel
	Annotations

	Example
	Semantics
	Evaluating expressions
	Task observations
	Normalising tasks
	Handling user inputs
	Implementation

	Properties
	Type preservation
	Progress
	Soundness and completeness of Inputs

	Related work
	TOP implementations
	Worfklow modelling
	Process algebras
	Reactive programming
	Session types

	Symbolic TopHat
	Introduction
	Examples
	Positive value
	Tax subsidy request
	Flight booking

	Language
	Expressions, values, and types
	Inputs
	Path conditions

	Semantics
	Symbolic evaluation
	Observations
	Normalisation
	Handling
	Simulating
	Solving
	Implementation
	Outlook

	Properties
	Soundness
	Completeness

	Conclusion
	Future work

	Related work
	Symbolic execution
	Contracts
	Axiomatic program verification

	Assistive TopHat
	Introduction
	Examples
	Tax subsidy request
	Dining Computer Scientists problem

	Generating next-step hints
	Symbolic execution
	Symbolic semantics
	Next-step hints observation
	Tax subsidy request
	Dining Computer Scientists

	Properties
	Correctness of simulate
	Correctness of hints

	Related work
	Automatic hint generation in intelligent tutoring systems

	III Conclusions
	Conclusion
	What is the essence of the task-oriented programming paradigm?
	How can we define and guarantee properties of tasks?
	How can we calculate next-step hints from a workflow specification?

	Future work
	End-user run-time feedback
	Unified hints framework
	iTasks integration
	Hint presentation
	Testing the effect of hints
	Other kinds of feedback

	Task analysis
	Analysis of TopHat programs
	Verification of iTasks behaviour
	Worfklow mining

	TOP language development
	Visual TopHat
	TopHat 2.0

	Curriculum Vitae

	Appendices
	TopHat type preservation proofs
	Type preservation under evaluation
	Type preservation under striding
	Task value preserves types
	Striding preserves types

	Proof of type preservation under normalisation
	Proof of type preservation under handling

	TopHat progress proof
	Proof of correctness of Inputs function
	Symbolic TopHat soundness and completeness
	Soundness proofs
	Proof of soundness of symbolic evaluation semantics
	Proof of soundness of symbolic striding semantics
	Proof of soundness of symbolic normalisation semantics
	Proof of soundness of symbolic handling semantics
	Proof of soundness of symbolic interacting semantics

	Completeness proofs
	Proof of completeness of the symbolic handling semantics
	Proof of completeness of the symbolic interaction semantics

	Assistive TopHat soundness and completeness
	Completeness proofs
	Completeness of Simulate
	Completeness of interaction
	Completeness of handling
	Completeness of normalisation
	Completeness of striding
	Completeness of evaluate

	Soundness proofs
	Soundness of simulate
	Soundness of interaction
	Soundness of handle
	Soundness of normalise
	Soundness of stride
	Soundness of evaluate
	V preserves consistency

	References

